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Abstract

In a standard incomplete markets model a Ramsey planner chooses time-varying paths of
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improving welfare for redistributive and insurance motives, which we quantify. Optimal cap-
ital income tax is higher than labor income tax in the long run; it provides insurance more
efficiently. The government accumulates assets providing redistribution via general equilib-
rium price effects. The planner’s degree of inequality aversion only affects policy in the short
run. Ignoring transition leads to significant welfare losses.
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How and to what extent should governments tax capital and labor income if they care about
inequality and individual risk? This paper provides a quantitative answer to this question. We
address it by solving a Ramsey problem in a general equilibrium model with heterogenous agents
and uninsurable idiosyncratic labor income risk, originally developed and analyzed by Bewley
(1986), Imrohoruglu (1989), Huggett (1993), and Aiyagari (1994), and from now on referred to
as the standard incomplete markets (SIM) model.

The SIM model has been used extensively for positive analysis and been relatively successful
at matching some basic facts about inequality and uncertainty1. In this environment agents face
uncertainty with respect to their individual labor productivity which they cannot directly insure
against (only a risk-free asset is available). Depending on their productivity realizations they
make different savings choices which leads to endogenous wealth inequality. As a result, on top
of the usual concern about not distorting agents decisions, a (utilitarian) Ramsey planner has two
additional objectives: to redistribute resources across agents, and to provide insurance against
their idiosyncratic productivity risk.

The study of optimal fiscal policy in the SIM model has largely focused, so far, on the maxi-
mization of steady state welfare2. In contrast, we allow policy to be time varying and the welfare
function to depend on the associated transition path. We calibrate the initial steady state to repli-
cate several aspects of the US economy; in particular the fiscal policy, the distribution of wealth,
and statistical properties of the individual labor income process. The final steady state is, then,
endogenously determined by the path of fiscal policy. As usual in the Ramsey literature, the plan-
ner finances an exogenous stream of government expenditures with the following instruments:
proportional capital and labor income taxes and government debt. In contrast with the Ramsey
literature, however, we allow for (possibly negative) lump-sum transfers. This would render the
problem trivial in a representative-agent model, but that is not the case here.

We find that optimal capital income taxes are front-loaded hitting the imposed upper bound
of 100 percent for 33 years then decreases to 45 percent in the long run. Labor income taxes are
reduced to less than half of their initial level, from 28 percent to about 13 percent in the long
run. The ratio of lump-sum transfers to output is reduced to about a half of its initial level of
8 percent and the government accumulates assets over time; the debt-to-output ratio decreases
from 63 percent to −15 percent in the long run (over the optimal transition asset level reaches 125
percent of GDP though). Relative to keeping fiscal instruments at their initial levels, this leads to
a welfare gain equivalent to a permanent 4.7 percent increase in consumption.

1See examples of the calibration strategies in Domeij and Heathcote (2004) and Castañeda, Dı́az-Giménez and
Rı́os-Rull (2003).

2See, for instance, Aiyagari and McGrattan (1998), Conesa, Kitao and Krueger (2009), and Nakajima (2010).
Acikgoz (2015) and Hagedorn, Holter and Wang (2016) are notable exceptions.
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Labor and capital income taxes are distortive, however, they are used to provide insurance and
redistribution. The only uncertainty that agents face, in our environment, is with respect to their
labor productivities3. Hence, labor income is the only risky part of the agents’ income. By taxing
it and rebating the extra revenue via lump-sum, the planner reduces the proportion of the agents’
income that is uncertain and effectively provides insurance. On the other hand, capital income
is particularly unequal and by taxing it the planner reduces the proportion of unequal income
in total income and, this way, provides redistribution. To demonstrate exactly how the optimal
policy reacts to changes in uncertainty and inequality we provide an analytic characterization
of the solution to the Ramsey problem in a simple two-period version of the SIM model. In
particular, we show that a higher intertemporal elasticity of substitution (Frisch elasticity) reduces
the optimal capital (labor) income tax since it aggravates the distortions associated with it. The
effect of government debt is more subtle. By decreasing debt the government crowds in capital
which affects prices indirectly, in particular increasing wages and reducing interest rates which
leads to a more uncertain but less unequal distribution of income. The optimal fiscal policy weighs
all these effects against one another.

We decompose the average welfare gains of 4.7 percent associated with implementing the
optimal policy into three parts: (i) 3.1 percent come from the more efficient allocation of aggregate
resources due to the reduction of the distortions of agents’ decisions; (ii) 6.4 percent come from
redistribution - the reduction in ex-ante inequality; and (iii) −4.5 percent come from the reduction
in insurance - there is more uncertainty about individual consumption and labor streams under the
optimal policy. The optimal policy implies an overall increase of capital taxes and a reduction
of labor taxes. The net effect on the distortions of agents’ savings and labor supply decisions is
positive. The higher capital taxes decrease the proportion of the agents’ income associated with the
highly unequal asset income and lead to the redistributional gains. Finally, a lower labor income
tax leads to a higher proportion of the agents’ income being uncertain, thus the negative insurance
effect that coincidentally almost exactly offsets the gains from the reduction in distortions.

We proceed to argue that disregarding transitory welfare effects in Ramsey problem can be
severely misleading. To make this point we compute the stationary fiscal policy that maximizes
welfare in the final steady state, which leads to a 9.8 percent greater steady state welfare than
the initial steady state. However, once transitory effects are considered, implementing this policy
leads to a welfare loss of 6.4 percent relative to keeping the initial fiscal policy. Relative to the
fiscal policy that maximizes welfare over transition it leads to a welfare loss of 11.3 percent.

In order to illustrate the role of market incompleteness and highlight why and how our results
3Panousi and Reis (2012) and Evans (2014) focus instead on investment risk. One justification for our focus on

labor income risk is the fact that it is a bigger share of the total income for most agents in the economy. The bottom
80 percent in the distribution of net worth have a a share of labor income above 77 percent, in the 2007 SCF.

3



differ from the ones in the complete-markets Ramsey literature, we develop the following build-
up. We start from the representative agent economy and sequentially introduce heterogeneity
in initial assets; different (but constant and certain) individual productivity levels; and, finally,
uninsurable idiosyncratic productivity risk which adds up to the SIM model. At each intermediate
step, building on the work of Werning (2007), we analytically characterize and then numerically
compute the optimal fiscal policy over transition identifying the effect of adding each feature.
In particular, we show that the planner chooses to keep capital taxes at the upper bound in the
initial periods if there is asset heterogeneity, before reducing it to zero. Productivity heterogeneity
rationalizes positive (and virtually constant) labor taxes. The key qualitative difference of the
solution once uninsurable idiosyncratic productivity risk is introduced is that long-run capital
income taxes are set to a positive level, which therefore must have to do solely with the provision
of insurance. One of the contributions of this paper is to quantify the optimal long-run capital
taxes in the SIM model, which to our knowledge had not been done before.

Our benchmark results are for the utilitarian welfare function which implies a particular social
choice with respect to the equality versus efficiency trade-off. We consider an alternative welfare
function which allows us to control the degree of “inequality aversion” of the planner, i.e. the
weight put on equality concerns. In particular we consider the case in which the planner com-
pletely disregards equality concerns. The optimal long-run levels of capital and labor taxes are
surprisingly resistant to changes in the planner’s inequality aversion. What does change signifi-
cantly, however, is how long the capital tax is maintained at the upper bound; the more the planner
“cares” about inequality the more years it keeps those taxes at the upper bound. When there are
no equality concerns, taxes do not hit the upper bound for any periods making it clear that the only
reason they do in the benchmark results is for redistributive purposes. Finally, we present robust-
ness exercises with respect to the calibration of the labor income process and key elasticities, the
magnitudes of the taxes are affected, but the qualitative features are maintained.

Related Literature
This paper is related to several strands of literature. First, it is related to the literature on the steady
state optimal fiscal policy in the SIM model. In an influential paper, Conesa, Kitao and Krueger
(2009) solve for the tax system that maximizes steady state welfare in an overlapping generations
SIM model. Their result includes an optimal long-run capital income tax of 36 percent. It is
important to note that though this result is similar to ours the reasons behind it are different.
They diagnose that their optimal capital tax level follows from the planner’s inability to condition
taxes on age, and the fact that a positive capital tax can mimic age-conditioned taxes in a welfare
improving way (see Erosa and Gervais (2002)). This mechanism is not present in our analysis
since we abstract from life-cycle issues.
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Aiyagari (1995) and Chamley (2001) provide rationales for positive long-run capital taxes in
environments similar to ours. Aiyagari (1995) shows that optimal taxes imply that the modified
golden rule should hold in the long run which can only be achieved by taxing savings; the planner
does not have precautionary motives while the agents do. We use this fact to corroborate our
results and indeed the modified golden rule holds in the long run. Complementarily, Chamley
(2001) shows, in a partial equilibrium version of the SIM model, that enough periods in the future
every agent has the same probability of being in each of the possible individual (asset/productivity)
states. It is, therefore, Pareto improving to transfer from the consumption-rich to the consumption-
poor in the long run. If the correlation of asset holdings with consumption is positive, this transfer
can be achieved by a positive capital tax rebated via lump-sum. In short, an agent’s asset level
in the long run is a good proxy for how lucky she has been; hence, taxing it is a good way to
provide insurance in the long run. In recent work, Dávila, Hong, Krusell and Rı́os-Rull (2012)
solve the problem of a planner that is restricted to satisfy agents’ budget constraints, but is allowed
to choose the savings of each agent. If the consumption-poor’s share of labor income is higher
than the average, increasing the aggregate capital stock relative to the undistorted equilibrium can
improve welfare through its indirect effect on wages and interest rates. In our setup, the Ramsey
planner taxes capital to affect after tax interest rates directly and achieves the same goal.4

Using the SIM model, Aiyagari and McGrattan (1998) compute the level of debt-to-output
that maximizes steady state welfare. Interestingly, they find that the optimal level is very close
to the actual level in the data at that time, around 67 percent. The fact that they abstract from
the transitional dynamics makes the result even more remarkable: the government could chose its
level of asset without having to finance it over time. It could, for instance, choose to have enough
assets to finance all its expenditures and yet it chooses to remain in debt. By holding debt, the
government crowds out capital increasing interest rates and decreasing wages. This effectively
provides insurance since the proportion of uncertain labor income out of total income is reduced.
This benefit is what drives the choice of the government to hold debt. However, there is another
effect associated with such a policy; it increases inequality (the proportion of the unequal asset
income out of total income increases). This negative effect is not particularly important in Aiya-
gari and McGrattan (1998) because their calibration focuses on matching labor income processes
which leads to an underestimation of wealth inequality. Winter and Roehrs (2016) replicate their
experiment with a calibration that targets wealth inequality statistics and find the opposite result,
i.e. the government chooses to hold high levels of assets. Our calibration procedure is closer to
that of Winter and Roehrs (2016), which elucidates our result that the Ramsey planner chooses to
accumulate assets over time.

4The Online Appendix contains a more detailed discussion of the relationship between our results and theirs.

5



Heathcote, Storesletten and Violante (2014) and Gottardi, Kajii and Nakajima (2015) charac-
terize the optimal fiscal policy in stylized versions of the SIM model. Their approaches lead to
elegant and insightful closed-form solutions. The environment and Ramsey problem in Gottardi,
Kajii and Nakajima (2015) is similar to ours except for the simplifications that yield tractability;
i.e. exogenous labor supply, the absence of borrowing constraints, and i.i.d. shocks to human
capital accumulation. Heathcote, Storesletten and Violante (2014), on the other hand, focus on
different, though related, questions. By abstracting from capital accumulation, they are able to re-
tain tractability in a model with progressive taxation, partial insurance, endogenous government
expenditure and skill choices (with imperfect substitution between skill types). This leads to sev-
eral interesting dimensions that, in our paper, we abstract from. However, the simplifications in
these models do not allow them to match some aspects of the data, in particular the level of wealth
inequality, which we find to be important for the determination of the optimal tax system.

We also contribute to the literature highlighting the importance of transition for policy pre-
scriptions in incomplete markets models. Domeij and Heathcote (2004) use the SIM model to
evaluate the implementation of a zero capital income tax policy taking into account the transi-
tional welfare effects. They conclude that such a reform would be detrimental to welfare due to its
transitory effect on inequality. Krueger and Ludwig (2013), Poschke, Kaymak and Bakis (2012),
and Winter and Roehrs (2016) also conduct experiments in this spirit. Acikgoz (2015) and Hage-
dorn, Holter and Wang (2016) argue that the optimal long-run fiscal policy is independent of initial
conditions and the transition towards it. They, then, proceed to study the properties of fiscal policy
in the long run, but are silent about the optimal transition path which is the focus of this paper.
For more on the relationship between their solution method and ours see Section 4.2.

There is an extensive literature that studies the Ramsey problem in complete-market economies
with heterogeneity. The most well known result for the deterministic5 subset of these economies
is due to Judd (1985) and Chamley (1986): capital taxes should converge to zero in the long run.
Among others, Jones, Manuelli and Rossi (1997) and Atkeson, Chari and Kehoe (1999) show this
result is robust to a relaxation of a number of assumptions. Werning (2007) characterizes optimal
policy for this class of economies using the same set of fiscal instruments that we use, in particular,
allowing for lump-sum transfers or taxes. Laczo, Marcet and Greulich (2015) characterize and
compute the Pareto improving capital and labor income taxes while addressing the criticism by
Straub and Werning (2014) imposing a bound on agents consumption levels. In Section 5 we
characterize analytically fiscal policy over the optimal transitions and link the results to these

5Aiyagari, Marcet, Sargent and Seppala (2002) consider market incompleteness with respect to aggregate risk
without heterogeneity. Bassetto (2014) studies how fiscal policy should respond to aggregate fluctuations in a
complete-market model with heterogeneous agents. Bhandari, Evans, Golosov and Sargent (2016) consider both
market incompleteness and heterogeneity.
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studies.
The New Dynamic Public Finance literature takes an alternative approach to answer our initial

question. It focuses on the design of a mechanism that would allow the planner to extract infor-
mation about the agents’ unobservable productivities efficiently. It assumes tax instruments are
unrestricted and in this sense it dominates the Ramsey approach in terms of generality, since the
latter ignores the information extraction problem6 and imposes ad-hoc linearity restrictions on the
tax system. One of the main results steaming from this literature is the inverse Euler equation; see
Golosov, Kocherlakota and Tsyvinski (2003). Farhi and Werning (2012) show that starting from
the allocations from the steady state of an undistorted SIM model and applying perturbations to
implement the inverse Euler equation leads to small welfare gains, of the order of 0.2 percent.
Moreover, it is difficult to solve the private information problem in dynamic economies with per-
sistent shocks. Farhi and Werning (2013) and Troshkin, Tsyvinski and Golosov (2010) have made
advancements in this direction in partial equilibrium settings without capital and find that restric-
tions to linear taxes lead to small welfare losses. Our view is that, even if only as a benchmark
to more elaborate tax systems, it is useful to understand the properties of a simpler optimal linear
tax system in a quantitative general equilibrium environment.

The rest of the paper is organized as follows. Section 1 illustrates the main mechanism be-
hind our results in a two-period economy. Section 2 describes the infinite horizon model, sets up
the Ramsey problem and discusses our solution technique. Section 3 describes the calibration.
Section 4 presents the main results of the paper. Section 5 presents the build-up from the com-
plete market economy results to our main results. Sections 6 and 7 provide results for alternative
welfare functions and calibrations and Section 8 concludes.

1 Mechanism: Two-Period Economy
In the SIM model, there are two dimensions of heterogeneity: productivity and wealth. Agents
have different levels of productivity which follow an exogenous stochastic process. In addition,
markets are incomplete and only a risk-free asset exists. Therefore, the idiosyncratic productivity
risk cannot be diversified away. It follows that the history of shocks, affects the amount of wealth
accumulated by each agent and there is an endogenously determined distribution of wealth.

In a two-period economy, it is possible to evaluate how each dimension of heterogeneity affects
the optimal tax system. Since there is no previous history of shocks, the initial wealth inequality
can be set exogenously. In this section, we characterize, under some assumptions about prefer-
ences, the optimal tax system when the government has access to linear labor and capital income
taxes, and lump-sum transfers. The lump-sum transfers are allowed to be negative, and the govern-

6The Ramsey planner is also unable to observe productivity levels, it is not allowed to condition taxes on them.
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ment could finance all necessary revenue with this non-distorvive instrument. In this section we
explain why it chooses to do otherwise. First, we assume agents have the same level of wealth but
face an idiosyncratic productivity shock - we call this the uncertainty economy . Then, we shut
down uncertainty and introduce ex-ante wealth inequality - this is referred to as the inequality
economy . Next we discuss the relationship with the infinite horizon problem.7

1.1 Uncertainty economy
Consider an economy with a measure one of ex-ante identical agents who live for two periods.
Suppose they have time-additive, von Neumann-Morgenstern utility functions. Denote the period
utility function by u (c, n)where c and n are the levels of consumption and labor supplied. Assume
u satisfies the usual conditions and denote the discount factor by β. In the first period each agent
is endowed with ω units of the consumption good which can be either consumed or invested into
a risk-free asset, a, and supplies n̄ units of labor inelastically.

In period 2, consumers receive income from the asset they saved in period 1 and from labor.
Labor is supplied endogenously by each agent in period 2 and the individual labor productivity, e,
is random and can take two values: eL with probability π and eH > eL with probability 1−π, with
the normalization πeL + (1− π) eH = 1. Due to the independence of shocks across consumers
a law of large numbers operates so that in period 2 the fraction of agents with eL is π and with
eH is (1− π). Letting ni be the labor supply of an agent with productivity ei, it follows that the
aggregate labor supply is N = πeLnL + (1− π) eHnH .

The planner needs to finance an expenditure ofG in period 2. It has three instruments available:
labor and capital income taxes, τn and τ k, and lump-sum transfers T which can be positive or
negative. Let w be the wage rate and r the interest rate. The total period 2 income of an agent
with productivity ei is, therefore, (1− τn)weini +

(
1 +

(
1− τ k

)
r
)
a + T . In period 2, output

is produced using capital, K, and labor and a constant-returns-to-scale neoclassical production
function f (K,N). We assume that f (·) is net of depreciation.

Definition 1 A tax distorted competitive equilibrium is a vector (K,nL, nH , r, w; τn, τ k, T ) such
that

1. (K,nL, nH) solves

max
a,nL,nH

u (ω − a, n̄) + βE [u (ci, ni)] s.t. ci = (1− τn)weini +
(
1 +

(
1− τ k

)
r
)
a+ T ;

2. r = fK (K,N), w = fN (K,N), where N = πeLnL + (1− π) eHnH;
7The Online Appendix discusses the case which there is uncertainty and inequality and the connection between

the results obtained here and the ones in Dávila et al. (2012).
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3. and, τnwN + τ krK = G+ T .

The Ramsey problem is to choose τn, τ k, and T to maximize welfare. Since agents are ex-ante
identical there is no ambiguity about which welfare function to use, it is the expected utility of
the agents. If there is no risk, i.e. eL = eH , the agents are also ex-post identical and the usual
representative agent result applies: since negative lump-sum transfers are available, it is optimal
to obtain all revenue via this undistortive instrument and set τn = τ k = 0.

In order to provide a sharp characterization of the optimal tax system we make the following
assumption discussed below8.

Assumption 1 No income effects on labor supply and constant Frisch elasticity, κ, i.e.

ucn − ucc
un
uc

= 0, and
uccun

n (uccunn − u2cn)
= κ.

We pursue a variational approach. Suppose
(
K,nL, nH , r, w; τ

n, τ k, T
)

is a tax distorted equi-
librium9. Consider a small variation on the tax system

(
dτn, dτ k, dT

)
, such that all the equilibrium

conditions are satisfied. Then, evaluate the effect of such a variation on welfare, taking as given
the optimal decision rules of the agents. Using this method we establish the following proposition.

Proposition 1 In the uncertainty economy, if u satisfies Assumption A, then, the optimal tax sys-
tem is such that τ k = 0,

τn =
(ν − 1) π(1− π) (eHnH − eLnL)

(ν − 1) π(1− π) (eHnH − eLnL) + κN (πν + (1− π))
> 0, (1.1)

where ν ≡ uc(cL,nL)
uc(cH ,nH)

, and T balances the budget.

Proof. See Appendix A.1.

Notice that the planner could choose to financeGwith T but chooses a positive distortive labor
income tax instead. The revenue from labor taxation is rebated via lump-sum transfers and the
proportion of the agents’ income that comes from the uncertain labor income is reduced. Hence,
this tax system effectively provides insurance to the agents. Why not provide full insurance by
taxing away all the labor income? This is exactly what would happen if labor were supplied

8In a similar two-period environment, Gottardi et al. (2014) characterize the solution to Ramsey problem without
Assumption A. However, they impose an alternative assumption about the sign of general equilibrium effects, which
are satisfied under Assumption A. Further, this assumption allows us to provide a sharper characterization of the
optimal tax system (besides the signs of taxes we also characterize the levels).

9Since the equilibrium does not exist for τn ≥ 1 or τk ≥ (1 + r) /r, we impose the restrictions that τn < 1 and
τk < (1 + r) /r.
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inelastically. In fact, notice that in this case κ = 0 and equation (1.1) implies τn = 1. However,
with an endogenous labor supply the planner has to balance two objectives: minimize distortions
to agents’ decisions and provide insurance. This balance is explicit in equation (1.1) seeing as
a higher κ implies a lower τn. That is, the more responsive labor supply is to changes in labor
taxes the more distortive these taxes are and the planner chooses a lower labor tax. In the limit, if
κ→ ∞ it will be optimal to set τn = 0.

With income effects on labor supply, distortions of the savings decision would spill over to
the labor supply decision and vice-versa. Thus, it could be optimal, for instance, to choose τ k

so as to mitigate the distortion imposed by a positive τn. This complex relationship complicates
the analysis considerably. Assumption 1 unties this relationship and as a result it is optimal to set
τ k = 0.

Next, suppose that eL = 1 − ϵunc/π and eH = 1 + ϵunc/ (1− π), so that ϵunc is a mean
preserving spread on the productivity levels. It is easy to see that if ϵunc = 0 equation (1.1)

implies that τn = 0. The effect of an increase in ϵunc on the optimal τn is not as obvious since the
right hand side of equation (1.1) contains endogenous variables. An application of the implicit
function theorem, however, clarifies that as long as ∂ν/∂ϵunc > 0 and ∂ν/∂τn < 0, it follows that
∂τn/∂ϵunc > 0, i.e. the optimal labor income tax is increasing in the level of risk in the economy.
Under standard calibrations, the equilibrium ratio of marginal utilities, ν, is in fact increasing in
the level of risk (∂ν/∂ϵunc > 0) and decreasing in the labor income tax (∂ν/∂τn < 0).

1.2 Inequality economy
Consider the environment described above only without uncertainty and with initial wealth in-
equality. That is, suppose the productivity levels do not vary between agents, i.e. eL = eH = 1,
and that ω can take two values: ωL for a proportion p of the agents and ωH > ωL for the rest, with
ω̄ ≡ pωL + (1− p)ωH .

Definition 2 A tax distorted competitive equilibrium is
(
aL, aH , nL, nH , r, w; τ

n, τ k, T
)

such that

1. For i ∈ {L,H}, (ai, ni) solves

max
ai,ni

u (ωi − ai, n̄) + βu (ci, ni) , s.t. ci = (1− τn)wni +
(
1 +

(
1− τ k

)
r
)
ai + T ;

2. r = fK (K,N),w = fN (K,N), whereK = paL+(1− p) aH and N = pnL+(1− p)nH;

3. and, τnwN + τ krK = G+ T .

In this economy the concept of optimality is no longer unambiguous. Since agents are different
ex-ante, a decision must be made with respect to the social welfare function. In what follows, by
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optimal we mean the one that maximizesW ≡ pUL+(1− p)UH ; the utilitarian welfare function.
The following proposition follows.

Proposition 2 In the inequality economy, if u satisfies Assumption A and has CARA or is GHH,
as in equation (3.1), then the optimal tax system is such that τn = 0,

τ k =

(
1+r
r

)
(ν − 1) p(1− p) (ωH − ωL)

(ν − 1) p(1− p) (ωH − ωL) +
ρ
ψ
(pν + (1− p))

> 0, (1.2)

where ρ ≡ 2+(1−τk)r
2+r

for CARA, ρ ≡ 1+β− 1
σ (1+(1−τk)r)

σ−1
σ

1+r+β
1
σ (1+(1−τk)r)

1
σ

for GHH, and ψ is the level of absolute

risk aversion10. T balances the budget.

Proof. See Appendix A.2.

The planner chooses a positive capital income tax which distorts savings decisions but allows
for redistribution between agents. The ex-ante wealth inequality is exogenously given. However,
agents with different wealth levels in the first period will save different amounts and have different
asset levels in the second period. This endogenously generated asset inequality is the one the tax
system is able to affect. A positive capital tax rebated via lump-sum transfers directly reduces the
proportion of the agents’ income that will be dependent on unequal asset income achieving the
desired redistribution which implies a reduction of consumption inequality (by assumption, there
is no labor supply inequality).

One of the key elements of equation (1.2) is the inverse of the coefficient of absolute risk
aversion, 1/ψ, which is proportional to the agents’ intertemporal elasticity of substitution. This
elasticity indicates the responsiveness of savings to changes in τ k. Hence, the higher this elasticity
is the lower is the optimal level of τ k, since providing redistribution becomes more costly. The
τn = 0 result is again associated with Assumption 1.

Assuming thatωL = 1−ϵine/p andωH = 1−ϵine/ (1− p), the effect of an increase in the mean
preserving spread, ϵine, on the optimal τ k can again be found by applying the implicit function
theorem on equation (1.2). It follows that, if ∂ν/∂ϵine > 0 and ∂ν/∂τ k < 0, then ∂τ k/∂ϵine > 0;
the optimal capital income tax is increasing in the level of inequality in the economy. If u satisfies
Assumption A and has CARA one can show that this is always the case.

1.3 Relationship with infinite horizon problem
The two-period examples are useful to understand some of the key trade-offs faced by the Ramsey
planner, since they allow for the exogenous setting of the levels of uncertainty (ex-post risk) and
inequality (ex-ante risk). In the infinite horizon version of the SIM model, however, these concepts

10The level of absolute risk aversion is endogenous is the GHH case.
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are inevitably intertwined. The characterization of the optimal tax system, therefore, becomes
considerably more complex. Labor income taxes affect not only the level of uncertainty through
the mechanism described above, but also the labor income inequality and the distribution of assets
over time. An agent’s asset level at a particular period depends not only on its initial value, but
on the history of shocks this agent has experienced. Therefore, capital income taxation affects
not only the ex-ante risk faced by the agents but also the ex-post. Nevertheless, these results are
useful to understand some features of the optimal fiscal policy in the infinite horizon model as
will become clear in what follows. In particular, Section 7.2 shows that the comparative statics
with respect to agents’ intertemporal elasticity of substitution and Frisch elasticity described in
this section are also pertinent for the infinite horizon problem.

2 The Infinite-Horizon Model
Time is discrete and infinite, indexed by t. There is a continuum of agents with standard prefer-
ences E0 [

∑
t β

tu (ct, nt)] where ct and nt denote consumption and labor supplied in period t and
u satisfies the usual conditions. Individual labor productivity, e ∈ E where E ≡ {e1, ..., eL},
are i.i.d. across agents and follow a Markov process governed by Γ, a transition matrix11. Agents
can only accumulate a risk-free asset, a. Let A ≡ [a,∞) be the set of possible values for a and
S ≡ E × A. Individual agents are indexed by the a pair (e, a) ∈ S. Given a sequence of prices
{rt, wt}∞t=0, labor income {τnt }∞t=0, (positive) capital income {τ kt }∞t=0, and lump-sum transfers
{Tt}∞t=0, each household, at time t, chooses ct (a, e), nt (a, e), and at+1 (a, e) to solve

vt(a, e) = maxu(ct(a, e), nt(a, e)) + β
∑

et+1∈E

vt+1(at+1(a, e), et+1)Γe,et+1

subject to

(1 + τ c)ct(a, e) + at+1(a, e) = (1− τnt )wtent(a, e) + (1 + (1− I{a≥0}τ
k
t )rt)a+ Tt

at+1(a, e) ≥ a.

Note that value and policy functions are indexed by time, because policies {τ kt , τnt , Tt}∞t=0 and
aggregate prices {rt, wt}∞t=0 are time-varying. The consumption tax, τ c, is a parameter12. Let

11A law of large numbers operates so that the probability distribution over E at any date t is represented by a vector
pt ∈ RL such that given an initial distribution p0, pt = p0Γ

t. In our exercise we make sure that Γ is such that there
exists a unique p∗ = limt→∞ pt. We normalize

∑
i p

∗
i ei = 1.

12It is not without loss of generality that we do not allow the planner to choose τc. There are two reasons for this
choice. The first is practical, we are already using the limit of the computational power available to us, and allowing
for one more choice variable would increase it substantially. Second, in the US capital and labor income taxes are
chosen by the Federal Government while consumption taxes are chosen by the states, so this Ramsey problem can be
understood as the one relevant for a Federal Government. We add τ c as a parameter for calibration purposes.
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{λt} be a sequence of probability measures over the Borel sets S of S with λ0 given. Since the
path for taxes is known, there will be a deterministic path for prices and for {λt}∞t=0. Hence, we
do not need to keep track of the distribution as an additional state; time is a sufficient statistic.

Competitive firms own a constant-returns-to-scale technology f (·) that uses capital, Kt, and
efficient units of labor,Nt, to produce output each period (f (·) denotes output net of depreciation,
δ denotes the depreciation rate). A representative firm exists that solves the usual static problem.
The government needs to finance an exogenous constant stream of expenditure, G, and lump-sum
transfers with taxes on consumption, labor income, and (positive) capital income. It can also issue
debt {Bt+1} and, thus, has the following intertemporal budget constraint

G+ rtBt = Bt+1 −Bt + τ cCt + τnt wtNt + τ kt rtÂt − Tt, (2.1)

where Ct is aggregate consumption and Ât is the tax base for the capital income tax.

Definition 3 GivenK0,B0, an initial distribution λ0 and a policy π ≡ {τ kt , τnt , Tt}∞t=0, a compet-
itive equilibrium is a sequence of value functions {vt}∞t=0, an allocation X ≡ {ct, nt, at+1, Kt+1,

Nt, Bt+1}∞t=0, a price system P ≡ {rt, wt}∞t=0, and a sequence of distributions {λt}∞t=1, such that
for all t:

1. Given P and π, ct(a, e), nt(a, e), and at+1(a, e) solve the household’s problem and vt(a, e)
is the respective value function;

2. Factor prices are set competitively,

rt = fK(Kt, Nt), wt = fN(Kt, Nt);

3. The probability measure λt satisfies

λt+1 =

∫
S

Qt ((a, e),S) dλt, ∀S ∈ S

where Qt is the transition probability measure;

4. The government budget constraint, (2.1), holds and debt is bounded;

5. Markets clear,

Ct +Gt +Kt+1 −Kt = f (Kt, Nt) , Kt +Bt =

∫
A×E

at(a, e)dλt.
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2.1 The Ramsey Problem
We now turn to the problem of choosing the optimal tax policy in the economy described above.
We assume that, in period 0, the government announces and commits to a sequence of future taxes
{τ kt , τnt , Tt}∞t=1, taking period 0 taxes as given. We need the following definitions:

Definition 4 GivenK0,B0, λ0, and {τ k0 , τn0 , T0}, for every policy π, equilibrium allocation rules
X (π) and equilibrium price rules P (π) are such that π,X (π), P (π) and corresponding {vt}∞t=0

and {λt}∞t=1 constitute a competitive equilibrium.

Definition 5 GivenK0,B0, λ0, and {τ k0 , τn0 , T0}, and a welfare functionW (π), the Ramsey prob-
lem is to maxπW (π) such that X (π) and P (π) are equilibrium allocation and price rules.

In our benchmark experiments we assume that the Ramsey planner maximizes the utilitarian
welfare function: the ex-ante expected lifetime utility of a newborn agent who has its initial state,
(a, e), chosen at random from the initial stationary distribution λ0. The planner’s objective is,
thus, given by

W (π) =

∫
S

E0

∞∑
t=0

βtu (ct (a, e|π) , nt (a, e|π)) dλ0.

In Section 7 we provide results for alternative welfare functions.

2.2 Solution method
We solve this problem numerically. Given an initial stationary equilibrium, for any policy π we
can compute the transition to a new stationary equilibrium consistent with the policy, as long as
the taxes become constant at some point. and calculate welfare W (π). We then search for the
policy π that maximizesW (π). This is, however, a daunting task since it involves searching in the
space of infinite sequences. In order to make it computationally feasible we impose the following
ad-hoc constraints: that each path {τ kt , τnt , Tt}∞t=1 is smooth over time and become constant after
a finite number of periods. We denote the set of policies that satisfy these properties by ΠR.
These conditions are restrictive, but they allow the problem to be solved and are flexible enough
to characterize some of the key features of the optimal paths of taxes.

The statement about the ad-hoc constraints must be qualified. In Section 5 we show that in
complete markets economies optimal capital taxes should be front-loaded. Hence, in defining the
set ΠR we take this under consideration. That is, we allow capital taxes to hit the imposed upper
bound of 100 percent for the first t∗ periods, where a model period is equivalent to one calendar
year. Importantly, t∗ is endogenously chosen and is allowed to be zero, so the fact that the solution
displays a capital tax at the upper bound for a positive amount of periods is not an assumption
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but a result. Other than this, we assume that the paths for
{
τ kt
}∞
t=t∗+1

and {τnt , Tt}
∞
t=1 follow

splines with nodes set at exogenously selected periods. The placement of the nodes is arbitrary,
we started with a small number of them and sequentially added more until the solution converged.
In the main experiment the planner was allowed to choose 15 variables13 in total: t∗, τ kt∗+1, τ k45,
τ k60, τ k100, τn1 , τn15, τnt∗+1, τ k45, τ k60, τ k100, T1, T15, Tt∗+1, T45, T60, and T100. In the Online Appendix we
include figures that compare the optimal fiscal policy computed with 4, 6, 9, 12, and 15 variables;
the welfare gains change from 4.73 to 4.74 in the last step. In the intermediate periods the paths
follow a spline function and after the final period they become constant at the last level. The choice
of the periods 1, 15, 45, 60, and 100, were a result of the fact that for experiments with less nodes,
the optimal t∗ was always close to 30, hence we placed the nodes at the same distance from each
other except for the last ones which are supposed to capture the long run levels14.

Solving the problem described above is a particularly hard computational task. Effectively we
are maximizing W (π) on the domain π ∈ ΠR, where each element of ΠR can be defined by a
vector with a finite number of elements (the nodes described above). We know very little about
its properties; it is a multivariate function with potentially many kinks, irregularities and multiple
local optima. Thus, we need a powerful and thorough procedure to make sure we find the global
optimum. We use a global optimization algorithm that randomly draws a very large number of
policies in ΠR and computes the transition between the exogenously given initial stationary equi-
librium and a final stationary equilibrium that depends on the policy. Then, we compute welfare
W (π) for each of those policies and select those that yield the highest levels of welfare. These
selected policies are then clustered, similar policies placed in the same cluster. For each cluster
we run an efficient derivative free local optimizer. The whole procedure is repeated depending
on how many local optima have been found and a Bayesian stopping rule is used to figure out if
enough global procedures have been run. A more detailed description of the algorithm can be
found in the Online Appendix15.

3 Calibration
We calibrate the initial stationary equilibrium of the model economy to replicate key properties
of the US economy relevant for the shape of the optimal fiscal policy. Table 1 summarizes our

13We combine t∗ and τkt∗+1 into one variable and one of the final taxes must be chosen so that government debt is
bounded.

14If the solver chooses t∗ close to one of these predetermined nodes the algorithm replaces that node for t = 30.
For instance, if t∗ = 43 the periods become 1, 15, 30, t∗ + 1, 60, and 100.

15The algorithm was parallelized for multiple cores. For each global iteration, we drew 147, 456 policies and
computed the transition and welfare for each of them. The number of transitions run for each cluster is endogenously
determined by the local solver, on average it amounted to around 150 transitions to find each local maximum. A total
of 8 global iterations were needed. We performed our analysis on the Mesabi cluster at the Minnesota Supercomputing
Institute using 1152 cores.
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parameter choices together with the targets we use to discipline their values and their model coun-
terparts. We use data from the NIPA tables for the period between 1995 and 200716 and from the
2007 Survey of Consumer Finances (SCF).

Table 1: Benchmark Model Economy: Target Statistics and Parameters

Statistic Target Model Parameter Value

Preferences and Technology
Intertemporal elast. of substitution 0.50 0.50 σ 2.000*
Frisch elasticity 0.72 0.72 ν 0.720*
Average hours worked 0.30 0.30 χ 4.120

Capital to output 2.72 2.71 β 0.965

Capital income share 0.38 0.38 α 0.380*
Investment to output 0.27 0.27 δ 0.100

Borrowing Constraint
% of hhs with wealth < 0 18.6 19.1 a/Y −0.034

Fiscal Policy
Capital income tax (%) 36.0 36.0 τk 0.360*
Labor income tax (%) 28.0 28.0 τn 0.280*
Consumption tax (%) 5.0 5.0 τc 0.050*
Transfer to output (%) 8.0 8.0 T/Y 0.080

Debt-to-output (%) 63.0 63.0 G/Y 0.146

Labor Productivity Process
Wealth Gini index 0.82 0.81 e1/e2 0.625

% of wealth in 1st quintile −0.2 −0.2 e3/e2 3.900

% of wealth in 4th quintile 11.2 10.2 Γ11 0.956

% of wealth in 5th quintile 83.4 83.4 Γ12 0.043

% of wealth in top 5% 60.3 60.8 Γ21 0.071

Corr. btw wealth and labor income 0.29 0.29 Γ22 0.929

Autocorr. of labor income 0.90 0.90 Γ31 0.012

Std of labor income 0.20 0.20 Γ32 0.051

Notes: Parameter values marked with (*) were set exogenously, all the others were endogenously and jointly deter-
mined.

16We choose this time period to be consistent with the one used to pin down fiscal policy parameters which we
take from Trabandt and Uhlig (2011) and also to prevent the Great Recession to affect our results.
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3.1 Preferences and technology
We assume GHH preferences (see Greenwood et al. (1988)) with period utility given by

u (c, n) =
1

1− σ

(
c− χ

n1+ 1
κ

1 + 1
κ

)1−σ

, (3.1)

where σ is the coefficient of relative risk aversion, κ is the Frisch elasticity of labor supply and χ
is the weight on the disutility of labor. These preferences exhibit no wealth effects on labor supply,
which is consistent with some microeconometric evidence showing these effects are in fact small.
See Holtz-Eakin et al. (1993), Imbens et al. (2001) and Chetty et al. (2012) for details.17

Further, they imply that aggregate labor supply is independent of the distribution of wealth
which is convenient for computing out of steady state allocations in our main experiment. We set
the intertemporal elasticity of substitution to 0.5; the number frequently used in the literature (e.g.
Dávila et al. (2012) and Conesa et al. (2009)). For the Frisch elasticity, κ, we rely on estimates
from Heathcote et al. (2010) and use 0.72. This value is intended to capture both the intensive
and the extensive margins of labor supply adjustment together with the typical existence of two
earners within a household. It is also close to 0.82, the number reported by Chetty et al. (2011)
in their meta-analysis of estimates for the Frisch elasticity using micro data. The value for χ is
chosen18 so that average hours worked equals 0.3 (the associated average effective labor level, N ,
is 0.33). To pin down the discount factor, β, we target a capital to output ratio of 2.72, and the
depreciation rate, δ, is set to match an investment to output ratio of 27 percent19.

The aggregate technology is given by a Cobb-Douglas production function Y = KαN1−α

with capital share equal to α, in the initial stationary equilibrium output is equal to 0.608. The
capital share parameter, α, is set to its empirical counterpart of 0.38.

3.2 Borrowing Constraints
We discipline the borrowing constraint a using the percentage of households in debt (negative net
worth). We target 18.6 percent following the findings of Wolff (2011) based on the 2007 SCF.

17 Marcet et al. (2007) investigate the role of wealth effects on the differences in allocation between complete and
incomplete markets and conclude that they can be relevant under certain calibrations.

18It is understood that in any general equilibrium model all parameters affect all equilibrium objects. For the
presentation purposes, we associate a parameter with the variable it affects quantitatively most.

19Capital is defined as nonresidential and residential private fixed assets and purchases of consumer durables.
Investment is defined in a consistent way.
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3.3 Fiscal policy
In order to set the tax rates in the initial stationary equilibrium we use the effective average tax
rates computed by Trabandt and Uhlig (2011) from 1995 to 2007 and average them. The lump-
sum transfers to output ratio is set to 8 percent and we discipline the government expenditure by
imposing a debt to output ratio of 63 percent also following Trabandt and Uhlig (2011). The lat-
ter is close to the numbers used in the literature (e.g. Aiyagari and McGrattan (1998), Domeij
and Heathcote (2004) or Winter and Roehrs (2016)). The calibrated value implies a government
expenditure to output ratio of 15 percent, the data counterpart for the relevant period is approx-
imately 18 percent. Further, we also approximate well the actual income tax schedule as can be
seen in Figure 1.
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Figure 1: Income tax schedule
Notes: The data was generously supplied by Heathcote et al. (2014) who used PSID and the TAXSIM program to
compute it. The axis units are income relative to the mean.

3.4 Labor income process
The individual labor productivity levels e and transition probabilities in matrix Γ are chosen to
match the US wealth distribution, statistical properties of the estimated labor income process and
the correlation between wealth and labor income. There are three levels of labor productivity in
our model. Since we normalize the average productivity to one we are left with two degrees of
freedom. The transition matrix is 3 × 3. The fact that it is a probability matrix implies its rows
add up to one, therefore we are left with an additional six degrees of freedom. Thus, we end up
with eight parameters to choose.

It is common to use the Tauchen method when calibrating the Markov process for productiv-
ities. This method imposes symmetry of the Markov matrix which further reduces the number
of free parameters. Following Castañeda et al. (2003) we do not impose symmetry which allows
us to target at the same time statistics from the labor income process and the individual wealth
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distribution.
To match the wealth distribution we target shares of wealth owned by the first, fourth and

fifth quintile, the share of wealth owned by individuals in the top 5 percent and the Gini index.
The targets are taken from the 2007 Survey of Consumer Finances20. We also target properties
of individual labor income estimated as the AR(1) process, namely its autocorrelation and its
standard deviation21. According to Domeij and Heathcote (2004), existing studies estimate the
first order autocorrelation of (log) labor income to lie between 0.88 and 0.96 and the standard
deviation (of the innovation term in the continuous representation) of 0.12 and 0.25. We calibrate
the productivity process so that the Markov matrix and vector e imply an autocorrelation of (log)
labor income of 0.9 and a standard deviation of the innovation of 0.222 (in Section 7 we provide
robustness results with respect to these choices). Finally, we target the correlation between wealth
and labor income which is 0.29 in the 2007 SCF data. This way we discipline to some extent the
labor income distribution using the wealth distribution that we match accurately. The resulting
productivity vector, transition matrix and stationary distribution of productivities, λ∗e, are

e =

 0.791

1.266

4.938

 , Γ =

 .956 .043 .001

.071 .929 .000

.012 .051 .937

 , and λ∗e =

 .616

.377

.007

 .

3.5 Model performance
Table 2 presents statistics about the wealth and labor income distributions. We target five of the
wealth distribution statistics, so it is not surprising that we match that distribution quite well. Table
3 presents another crucial dimension along which our model is consistent with the data: income
sources over the quintiles of wealth. The composition of income, specially of the consumption-
poor agents, plays an important role in the determination of the optimal fiscal policy. The fraction
of uncertain labor income determines the strength of the insurance motive and the fraction of the
unequal asset income affects the redistributive motive. Our calibration delivers, without targeting,
a good approximation of the income composition. Finally, we also match the consumption Gini
which remained fairly constant around 0.27 in the period from 1995 to 2003 (see Krueger and
Perri (2006)).

20For a general overview of this data see Dı́az-Giménez et al. (2011).
21Including transitory shocks would allow a better match to the labor income process. However, these types of

shocks can, for the most part, be privately insured against (see Guvenen and Smith (2013)) so we chose to abstract
from them to keep the model parsimonious.

22We follow Nakajima (2012) in choosing these targets. The targets are associated with labor income, wen, which
includes the endogenous variables w and n. Therefore, to calibrate the parameters governing the individual produc-
tivity process, the model must be solved repeatedly until the targets are satisfied.
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Table 2: Distribution of wealth

Bottom (%) Quintiles Top (%) Gini
0-5 1st 2nd 3rd 4th 5th 95-100

Data -0.1 -0.2 1.1 4.5 11.2 83.4 60.3 0.82
Model -0.1 -0.2 1.5 5.1 10.2 83.4 60.8 0.81

Notes: Data come from the 2007 Survey of the Consumer Finances.

Table 3: Income sources by quintiles of wealth

Quintile Model Data
Labor Asset Transfer Labor Asset Transfer

1st 83.8 -0.3 16.5 81.9 2.1 16.1
2nd 85.4 1.6 13.1 82.8 4.8 12.2
3rd 84.1 4.7 11.2 80.0 7.3 12.6
4th 81.4 8.6 10.0 77.6 10.3 12.2
5th 58.7 36.1 5.1 51.8 40.0 8.2

Notes: Table summarizes the pre-tax total income decomposition. We define the asset income as the sum of income
from capital and business. Data come from the 2007 Survey of the Consumer Finances, the numbers are based on a
summary by Dı́az-Giménez et al. (2011).

4 Main Results
The optimal paths for the fiscal policy instruments are illustrated in Figure 2. Capital taxes are
be front-loaded hitting the upper bound for 33 initial periods then decrease to 45 percent in the
long run. Labor income taxes are substantially reduced to less than half of its initial level, from 28

percent to about 13 percent in the long run. The ratio of lump-sum transfers to output decreases
initially to about 3 percent, then increases back to its initial level of 8 percent before it starts con-
verging to its final level of 3.5 percent. The government accumulates assets in the initial periods of
high capital taxes reaching a level of debt-to-output of about −125 percent, which then converges
to a final level of −15 percent. Relative to keeping fiscal instruments at their initial levels, this
leads to a welfare gain equivalent to a permanent 4.7 percent increase in consumption.

4.1 Aggregates
The aggregates associated with the implementation of the optimal policy are shown in Figure 7.
The capital level initially decreases by about 8 percent in the first 13 years, but then increases
towards a final level 20 percent higher than in the initial steady state. The increase might be
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Figure 2: Optimal Fiscal Policy: Benchmark
Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition; The black dots are the choice
variables: the spline nodes and t∗, the point at which the capital tax leaves the upper bound.

surprising at a first glance given the higher capital taxes. To understand is, first notice that, even if
capital income taxes were set to 100 percent forever, there would still be precautionary motives for
the agents with relatively high productivity to save; if they receive a negative shock they can then
consume their savings. The precautionary motive to save is actually strengthened since the (after-
tax) labor income increases. The decrease in government debt also contributes substantially to this
increase - an effect we explain further below in Section 4.5.4. Moreover, the level of aggregate
labor increases by about 15 percent immediately after the policy change following the reduction
in labor taxes, increasing the marginal productivity of capital.

The higher levels of capital and labor lead to higher levels of output and consumption, which
increases by 15 and 20 percent respectively over the transition. The accompanying increase in
average consumption and labor has ambiguous effects on the welfare of the average agent. Hence,
we also plot in Figure 7f what we call the average consumption-labor composite, defined below in
equation (4.1), which is the more relevant measure for welfare. On impact the labor-consumption
composite increases by 13 percent as the higher consumption levels (due to the initial reduction in
savings) more than compensate for the higher supply of labor. It then decreases for some periods
following the reduction in output and the increasing savings. In the long run it returns to a level
about 13 percent higher than in the initial steady state.
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4.2 Long-Run Optimality Conditions
Aiyagari (1995) analyses the optimal long-run capital taxes in an environment similar to the one we
are working with.23 He argues that, since there is no aggregate uncertainty, the Ramsey planner’s
decision to move resources across time is risk-free and the associated Euler equation, in the long
run, implies the modified golden rule (i.e. β(1+ fK(K,N)) = 1). On the other hand, agents face
idiosyncratic shocks and the possibility of being borrowing-constrained in some future periods
which leads to extra savings due to precautionary reasons. In order to implement the optimal level
of capital in the long run it follows that the planner must set positive capital taxes. This logic also
implies that the modified golden rule should hold in the long run; our numerical results imply
exactly that. Figure 3 displays β(1 + fK(K,N)) for our benchmark results (solid line) and for an
experiment, described in more detail in Section 4.6.2, in which we restrict the policy instruments
to remain constant throughout the transition (dashed line). It becomes clear that the variations
of taxes over time are crucial to approximate the long-run properties of the optimal tax system.
Moreover, we view this as corroborating evidence for the accuracy of our numerical long-run
results.
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Figure 3: β(1 + fK(K,N))

Notes: Solid line: benchmark experiment; Dashed line: optimal transition with constant policy.

Recently Acikgoz (2015) and Hagedorn et al. (2016) have made advancements towards obtain-
ing a better characterization of the long-run optimal tax system in environments very similar to
ours. Both papers claim that the long-run optimal tax system is independent of initial conditions
and of the transition towards it.24 Moreover, they show that three optimality conditions must be
satisfied (the modified golden rule and two additional ones) and propose an algorithm that allows
for the computation of the optimal long-run tax system. We have applied this algorithm to our

23The home production assumption in Aiyagari (1995) is equivalent to our assumption that preferences are GHH.
The differences are that in his environment the planner does not have lump-sum taxes as an instrument, but chooses
the level of government expenditure every period (which enters separably in the agents’ utility functions).

24At the time of writing, a formal proof is not available, though a convincing heuristic argument has been made
for it, see Acikgoz (2015).

22



economy and have found very similar results25. We view this as further corroborating evidence of
the accuracy of our (and their) results. It is reassuring that, even though long-run taxes only affect
welfare in the far future26, our algorithm is still able to accurately approximate long-run optimal
taxes.

4.3 Distributional Effects
Movements in the levels do not provide a full picture of what results from the implementation of
the optimal fiscal policy. It is also important to understand its effects on inequality and on the risk
faced by the agents. Figure 4a plots the evolution of the Gini index for consumption27. Notice
that, though it takes some time for the reduction to start, the consumption Gini is significantly
reduced over the transition reaching a low about 16 percent lower than the initial level. As will
become clear below, this reduction in inequality is behind most of the welfare gains associated
with the optimal policy. Not surprisingly, such a change would be supported by most agents in the
economy with the exception of the highly productive and, therefore, wealthier ones - see Table 4.

Figure 4b displays the evolution of the shares of labor, capital and transfer income out of total
income. Importantly, notice that the share of labor income is significantly increased under the
optimal policy. Since all the risk faced by agents in the SIM model is associated with their labor
income, it turns out that they face more risk after the policy is implemented. This has an obvious
negative effect on welfare which is, however, outweighed by the gains associated with the higher
levels of consumption and the reduction in inequality it provides. The next sections will clarify
some of these issues.
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Figure 4: Inequality measures
Notes (a) and (b): Thin lines: initial stationary equilibrium; Thick lines: optimal transition. Notes (b): Solid lines:
labor income share; Dash-dotted lines: transfer income share; Dashed lines: asset income share

25See the Online Appendix for details on how the conditions can be adapted to our environment exactly and for the
results we obtain using them.

26The last time period we allow taxes to change is at t = 100, and
∑∞

t=100 β
t/
∑∞

t=0 β
t ≈ 0.03.

27Since labor supply is proportional to productivity levels, the inequality of hours is unaffected by the policy, it is
in fact determined exogenously. Hence, here we can focus on consumption inequality.
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Table 4: Proportion in favor of reform

e = L e =M e = H All

99.5 98.3 4.2 99.4

4.4 Welfare decomposition
Here we present a result that will be particularly helpful for understanding the properties of the
optimal fiscal policy. First, let xt be the individual consumption-labor composite (the term inside
the utility function 3.1), that is

xt ≡ ct − χ
n
1+ 1

κ
t

1 + 1
κ

, (4.1)

and Xt denote its aggregate level. The utilitarian welfare function can increase for three reasons.
First, it will increase if the utility of the average agent, U ({Xt}), increases; we call this the level
effect. Reductions in distortive taxes will achieve this goal by allocating resources more efficiently.
This is the only relevant effect in a representative agent economy (without heterogeneity). Sec-
ond, since agents are risk averse, it increases if the uncertainty about individual paths {xt}∞t=0 is
reduced; we call this the insurance effect. By redistributing from the (ex-post) lucky to the (ex-
post) unlucky, a tax reform reduces the uncertainty faced by the agents. Finally, it will increase
if the inequality across the certainty equivalents of the individual paths {xt}∞t=0, for agents with
different initial (asset/productivity) states, is reduced; we call this the redistribution effect. By
redistributing from the rich (ex-ante lucky) to the poor (ex-ante unlucky), the tax reform reduces
the inequality between agents. In Appendix B we give precise definitions for each of these effects
and show how it is possible to measure them. Then, letting ∆ be the average welfare gain, ∆L the
gains associated with the level effect, ∆I with the insurance effect, and ∆R with the redistribution
effect, we prove the following proposition.

Proposition 3 If preferences are GHH as in (3.1), then

1 + ∆ = (1 + ∆L) (1 + ∆I) (1 + ∆R) .

Proof. See Appendix B.

Hence, it is possible to decompose the average welfare gains into the components described
above28. The results for this decomposition for our main results are in Table 5. Most of the

28The welfare gains described above are in terms of consumption-labor composite units. The decomposition does
not hold exactly in terms of consumption units. To keep our results comparable with others, we report the average
welfare gains in terms of consumption units and rescale the numbers for ∆L, ∆I , and ∆R accordingly.
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welfare gains implied by the implementation of the optimal fiscal policy come from the reduction
in ex-ante inequality (redistribution effect). The also substantial welfare gains associated with the
reduction in distortions (level effect) is almost exactly offset by welfare losses due to the increase
in uncertainty (insurance effect). The labor income process hard-wires a strong savings motive
for the high income agents, since they have a low probability of reaching such a state and a high
probability of leaving it. It follows that the savings decision is less elastic than the labor supply
decision, and replacing labor taxes with capital taxes reduces overall distortions.

Table 5: Welfare decomposition

Average Level Insurance Redistribution
welfare gain effect effect effect

∆ ∆L ∆I ∆R

4.7 3.1 -4.5 6.4

4.5 Fixed instruments
In order to understand the role played by each instrument in the optimal fiscal policy, we ran
experiments in which we hold each of them fixed and optimize only with respect to the others.
Table 6 displays the welfare decomposition for each of these experiments.29

4.5.1 Capital taxes

It is clear from the welfare decomposition in Table 6 that the path of capital taxes plays a crucial
role in the redistributional gains associated with the unrestricted optimal policy. Restricting capital
taxes to their initial level brings the redistribution effect from 6.4 percent to −0.4 percent. In line
with the result in Proposition 2, the increase in capital taxes especially in the initial years leads to a
strong redistribution effect as the proportion of unequal asset income is reduced (actually brought
to zero in the first 33 years). Relative to the optimal policy, the restriction on capital taxes also
leads to higher labor taxes (which explains the better insurance effect) and a lower accumulation
of assets by the government.

4.5.2 Labor taxes

Fixing labor taxes at their initial level is particularly detrimental to the level effect. In the optimal
policy labor taxes are reduced substantially and the labor supply distortions reduced accordingly,
which drives up the capital stock by increasing it’s marginal product. The distributional gains are

29The corresponding figures can be found in the Online Appendix.
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virtually unaffected whereas the insurance effect is improved, which is consistent with the result
in Proposition 1 since the restriction implies higher labor taxes. The fact that the insurance effect
is still negative might be surprising though. What is behind this effect is the role played by the
accumulation of assets by the government which we explain bellow.

4.5.3 Lump-sum transfers

Restricting lump-sum transfers to its initial level does not affect the results as much as the other
restrictions; the average welfare gains are reduced from 4.7 percent to 4.2 percent. Most of the
losses come from the reduction in the level effect. The restriction leads to a higher overall level
of transfers and, therefore, higher labor taxes relative to the unrestricted optimal policy whereas
capital taxes are virtually unaffected. This leads to an overall higher level of distortions which
explains the lower level effect.

Table 6: Welfare decomposition: Fixed instruments

∆ ∆L ∆I ∆R

Fixed capital taxes 1.0 3.6 -2.2 -0.4
Fixed labor taxes 3.2 -0.9 -2.2 6.5
Fixed lump-sum 4.2 0.9 -3.2 6.7
Fixed debt 3.8 2.6 -2.9 4.2

Benchmark 4.7 3.1 -4.5 6.4

4.5.4 Government debt

In the absence of borrowing constraints an increase in government debt is innocuous, in response
agents simply adjust their savings one-to-one and the Ricardian equivalence holds. In the SIM
model, however, agents face a borrowing constraint (which is binding for some of them). The
Ricardian equivalence breaks down and in response to an increase in government debt aggregate
savings increase by less than one-to-one. Since the asset market must clear (i.e. At = Kt + Bt),
it follows that capital must decrease as a result. Hence, increases in government debt crowd out
capital while decreases crowd in capital30.

In order to understand why the government accumulates assets in the optimal policy it is im-
portant to look at its effect on equilibrium prices31. A lower amount of government debt leads

30See Aiyagari and McGrattan (1998) and Winter and Roehrs (2016) for an extensive discussion of this issue.
31The fact that the government accumulates assets does not imply that it becomes the owner of part of the capital

stock. Agents own the capital, but on average owe the government (in the form of IOU contracts) more than the value
of their capital holdings.
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to a higher level of capital which reduces interest rates and increases wages. Hence, besides the
potential positive level effect associated with the higher levels of capital such a policy also af-
fects the insurance and redistribution effects. It effectively reduces the proportion of the agents’
income associated with the unequal asset income and increases the proportion associated with
uncertain labor income. The result is a positive redistribution effect and a negative insurance ef-
fect. Thus, when government debt-to-output is held fixed the redistributional gains are reduced
from 6.4 percent to 4.2 percent while the insurance loss is reduced from −4.5 percent to −2.9

percent. This also clarifies why the planner chooses to accumulate assets when the instrument is
not restricted: the welfare gains associated with the resulting redistribution outweigh the losses
from the increased uncertainty.

4.6 Transitory effects
In this section we first compute the optimal fiscal policy ignoring transitory welfare effects. A
comparison with our benchmark results allows us to measure the importance of accounting for
these effects. If the difference was small this would be a validation of experiments of this kind
performed in the literature. It turns out, however, that the results are remarkably different. A
better option, is to solve for the optimal policy with constant instruments accounting for transitory
welfare effects. The welfare loss associated with holding the instruments constant, however, is
still significant. The results are summarized in Tables 7 and 8.

Table 7: Final Stationary Equilibrium: transitory effects

τh τ k T/Y B/Y K/Y N r w

Initial equilibrium 28.0 36.0 8.0 63.0 2.71 0.33 4.1 1.14

Stat. equil. 18.0 - 3.73 -326.0 3.99 0.43 -0.4 1.45
Stat. equil. fixed debt 4.7 -5.2 -5.4 43.2 3.20 0.43 1.9 1.26
Constant policy 7.7 73.7 3.5 53.4 2.21 0.36 7.2 1.01

Benchmark 12.6 45.1 3.4 -15.1 2.82 0.39 3.5 1.17

Notes: The values of τh, τk, T/Y , B/Y , and r are in percentage points.

4.6.1 Maximizing steady state welfare

Here the the planner chooses stationary levels of all four fiscal policy instruments to maximize
welfare in the final steady state. In particular, the planner can choose any level of government
debt without incurring in the transitional costs associated with it. It chooses a debt-to-output ratio
of −326 percent. At this level the amount of capital that is crowded in is close to the golden
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Table 8: Welfare decomposition: transitory effects

∆ ∆L ∆I ∆R

Stat. equil. 24.8 28.9 -12.0 9.9
Stat. equil. fixed debt 9.2 26.7 -9.5 -4.7
Constant policy 3.2 2.6 -3.1 3.8
Benchmark 4.7 3.1 -4.5 6.4

rule level, that is, such that interest rates (net of depreciation) equal to zero. Thus, taxing capital
income in this scenario has no relevant effect and we actually find multiple solutions with different
levels of capital taxes which is why we do not display that number in Table 7. The average welfare
gains associated with this policy are of 24.8 percent, that is, agents would be willing to pay this
percentage of their consumption in order to be born in the stationary equilibrium of an economy
that has this policy instead of the initial stationary equilibrium. However, these welfare gains
ignore the transitory effects, it is as if the economy jumped immediately to a new steady state in
which the government has a large amount of assets without incurring in the costs associated with
accumulating it.

A more reasonable experiment, which is closer to the one studied by Conesa et al. (2009), is
to restrict the level of debt to remain at its initial level. When this is the case, the planner reduces
labor taxes and capital taxes substantially obtaining most of the necessary revenue via lump-sum
taxes. This has detrimental insurance and redistribution effects, but the associated level effect
more than makes up for it. The policy leads to a welfare gain of 9.2 percent relative to the initial
steady state when transitory effects are ignored. However, once transitory effects are considered,
implementing this policy leads to a welfare loss of 6.4 percent. Hence, ignoring transitory effects
can be severely misleading. Importantly, the transitory distributional effects of the policy and the
costs associated with the accumulation of capital (or assets by the government) are ignored.

4.6.2 Transition with constant policy

Here we consider the problem of finding the constant optimal fiscal policy that maximizes the
same welfare function we use in our benchmark experiment, in which transitory effects are ac-
counted for.32 The level of capital taxes is close to average between the upper bound of 100 percent
and the final capital tax in the benchmark experiment. Labor taxes are reduced from a long-run
level of 12.6 percent to 7.7 percent and lump-sum transfers converge much faster to the final level
of 3.5 percent. The main difference in the fiscal policy instruments is the fact that with a con-

32We present figures comparing these results with the benchmark ones in the Online Appendix.
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stant policy the government is not able to accumulate assets via higher initial capital taxes. The
debt-to-output ratio remains close to the initial level, even though we do not impose any restric-
tions on it in this experiment. As a result of the higher long-run capital tax and relatively higher
debt-to-output ratio, capital decreases by about 20 percent in the long run whereas it increases
by approximately the same amount in the benchmark experiment. The associated higher interest
rates and lower wages lead to the reduction in the redistributional gains and reduces the insurance
losses associated with the lower labor tax. This policy leads to an average welfare gain of 3.2
percent whereas the time varying policy increases welfare by 4.7 percent. That is, the restriction
to constant policies leads a welfare loss of 1.5 percent.

5 Complete Market Economies
To our knowledge, this paper is the first to solve the Ramsey problem in the SIM environment. To
highlight the role of the market incompleteness for the optimal policy and relate our findings to
other results in the literature, we provide a build up to our benchmark result. First, we start from
the representative agent economy (Economy 1) and introduce heterogeneity only in initial assets
(Economy 2), heterogeneity only in individual productivity levels (constant and certain) (Economy
3), and heterogeneity both in initial assets and in individual productivity levels (Economy 4).
Introducing idiosyncratic productivity shocks and borrowing constraints brings us back to the SIM
model. At each step, we analyze the optimal fiscal policy identifying the effect of each feature.

In what follows we examine the optimal fiscal policy in Economies 1-4. Their formal environ-
ments can be quickly described by starting from the SIM environment delineated above. Economy
4 is the SIM economy with transition matrix, Γ, set to the identity matrix. and borrowing con-
straints replaced by no-Ponzi conditions. Then, we obtain Economy 3 by setting initial asset levels
to its average, Economy 2 by setting the productivity levels to its average, e = 1, and Economy
1 by equalizing both initial assets and levels of productivity. Figure 5 contains the numerical re-
sults obtained using the same method used for the benchmark results together with some of the
analytical equations derived bellow.

5.1 Economy 1: representative agent
To avoid a trivial solution, the usual Ramsey problem in the representative agent economy does not
consider lump-sum transfers to be an available instrument. Since in this paper we do, the solution
is, in fact, very simple. It is optimal to obtain all revenue via lump-sum taxes and set capital and
labor income taxes so as not to distort any of the agent’s decisions. This amounts to τ kt = 0 and
τnt = −τ c for all t ≥ 1. Since consumption taxes are exogenously set to a constant level, zero
capital taxes leaves savings decisions undistorted and labor taxes equal to minus the consumption
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tax ensures labor supply decisions are not distorted as well. In this setup the Ricardian equivalence
holds, so that the optimal paths for lump-sum taxes and debt are indeterminate: there is no lesson
to be learned from this model about the timing of lump-sum taxes or the path of government debt.
This will also be the case in Economies 2, 3 and 4 and is why we do not discuss or plot them.

5.2 Economy 2: heterogeneity in initial assets
Introducing heterogeneity in the initial level of assets we can diagnose the effect of this particular
feature on the Ramsey policies by comparing it to the representative agent ones. We extend the
procedure introduced by Werning (2007)33 to characterize the optimal policies for this and the next
two economies. For the economy with heterogeneity in asset we obtain the following proposition.

Proposition 4 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is given by
τ kt = 1 for 1 ≤ t < t∗ and τ kt = 0 for all t > t∗; and τnt = −τ c for all t ≥ 1.

Proof. See Appendix C.1.

The results in this and the next two propositions are valid for any set of welfare weights.34

Hence, we effectively characterize the set of Pareto efficient policies. In this Proposition, in par-
ticular, a change in the welfare weights would only change t∗, leaving unchanged the long run
optimal levels of capital and labor income taxes. In a similar setting Laczo et al. (2015) obtain
analogous results. In Section 6 we show that the long-run taxes in the benchmark results are also
robust to some changes in the welfare weights.

Once again, there is no reason to distort labor decisions since labor income is certain and the
same for all agents. However, the path of capital taxes differs from the representative agent ones.
Proposition 2 provides a rationale for taxing capital in this case; since agents have different initial
asset levels, capital taxes can be used to provide redistribution. This fact together with the fact
that capital taxes are zero in the long run determine the optimal path for capital taxes35. Capital
taxes are positive and front-loaded, hitting the upper bound in the initial periods and subsequently
being driven to zero. The extra revenue obtained via capital taxation is redistributed via lump-
sum transfers (or a reduction in lump-sum taxes relative to the representative agent level). It is
important to reemphasize that since lump-sum transfers are an unrestricted instrument, there is no
reason to tax capital in the initial periods other than for redistributive motives.

33Werning (2007) solves for separable and balance growth path utility functions. Besides solving for GHH pref-
erences we also impose the upper bound on capital income taxes and remove the possibility of time zero taxation to
keep the results comparable with the benchmark ones.

34The associated numerical results do assume a utilitarian welfare function.
35Straub and Werning (2014) show that optimal long-run capital taxes can be positive in environments similar to

this one. The reason why their logic does not apply here is the fact that the planner has lump-sum taxes as an available
instrument which removes the need to obtain revenue via distortive instruments. In the Online Appendix we include
a more detailed discussion of this issue.
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In order to have a sense of the magnitudes of t∗ and the increase in lump-sum transfers, we
apply the same procedure to the one we used to solve for the optimal tax system in the benchmark
economy. All we need to do is choose the initial distribution of assets. The stationary distribution
of assets in this economy is indeterminate36, hence, we can choose any one we want. To keep the
results comparable we choose the initial stationary distribution from the benchmark experiment37.

5.3 Economy 3: heterogeneity in productivity levels
It turns out that the Ramsey policies for this economy are a bit more complex. Let Φ, Ψ, and Ωn

be constants (defined in Appendix C) and define

Θt ≡
Ct

Ωnχ κ
1+κ

N
1+κ
κ

t

− 1.

The following proposition can be established.

Proposition 5 Assuming capital taxes are bounded only by the positivity of gross interest rates,
the optimal labor tax, τnt , can be written as a function of Θt given by

τnt (Θt) =
(1 + τ c)ΨΘt

ΦΘt +Ψ(σ +Θt)
− τ c, for t ≥ 1, (5.1)

with sensitivity

Θt
dτnt (Θt)

dΘt

=
σ (τnt (Θt) + τ c)2

(1 + τ c)Θt

. (5.2)

It is optimal to set the capital-income tax rate according to

1 + (1− τ kt+1)rt+1

1 + rt+1

=
τnt + τ c

τnt+1 + τ c
1− τnt+1

1− τnt
, for t ≥ 1. (5.3)

Proof. See Appendix C.2.

Since labor income is unequal, there is a redistributive reason to tax it. Optimal labor taxes
are not constant over time since they depend on Θt. If they were constant, however, equation (5.3)

would imply τ kt = 0 for all t ≥ 2. Thus, capital taxes will fluctuate around zero to the extent that
labor taxes vary over time. We disregard the upper bound on capital taxes, τ kt+1 ≤ 1, because it
would complicate the result even further and in a non-interesting way. It could be that the bound

36For the preferences chosen above, consumption is linear on the individual asset level, and labor supply is inde-
pendent of it. It follows that the equilibrium levels of aggregates are independent of the asset distribution and equal to
the representative agent ones (see Chatterjee (1994)). In a steady state, β

(
1 +

(
1− τk

)
r
)
= 1 and, therefore, every

agent will keep its asset level constant.
37In fact, a rescaling of it since the steady state aggregate level of assets is different when there is no idiosyncratic

risk (since there is no precautionary motive for savings).
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Figure 5: Optimal Taxes: Complete Market Economies
Notes: Dashed line: initial taxes; Solid line: optimal taxes.
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is violated if the variation of Θt between t and t+1 is large enough. However, as discussed below,
quantitatively this is unlikely.

To obtain a numerical solution we set the productivity levels to the ones in the benchmark
economy and apply the same procedure. To have a sense of the magnitude of the sensitivity of τnt
toΘt we plug the initial stationary equilibrium numbers (τn = 0.28, τ c = 0.05, σ = 2, andΘ ≈ 3)
into equation (5.2). This implies a sensitivity of 0.07, i.e. a 1 percent increase in Θt changes the
tax rate by 0.06 of a percentage point, from 0.28 to 0.2798. 38 Notice that the volatility of Θt over
time is unsubstantial. It follows that the optimal labor taxes are virtually constant and capital taxes
virtually zero.

In any case, the fact that capital is taxed at all seems to be inconsistent with the logic put
forward so far. It is not. When labor taxes vary over time they distort the savings decision, capital
taxes are then set to “undo” this distortion. The analogous is not the case in Economy 2 because
of the absence of income effects on labor supply; distortions of the savings decision do not affect
the labor supply.

5.4 Economy 4: heterogeneity in initial assets and productivity levels
The result for this economy is a combination of the last two.

Proposition 6 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is given by
τ kt = 1 for 1 ≤ t < t∗, τ kt follows equation (5.3) for t > t∗; τnt evolves according to equation
(5.3) for 1 ≤ t < t∗; and τnt is determined by equation (5.1) for all t ≥ t∗.

Proof. See Appendix C.3.

Optimal capital taxes are very similar to Economy 2 and for the same reasons. Labor taxes are
determined by the same equation as in Economy 3 for t ≥ t∗. In initial period, 1 ≤ t < t∗, while
capital taxes are at the upper bound,Rt = 1 < R∗

t and, therefore, equation (5.3) implies that labor
taxes should be increasing. Lump-sum transfers are higher than the in Economies 2 and 3 since
they are used to redistribute the capital and labor tax revenue.

6 Controlling the degree of inequality aversion
Figure 6 shows that the solution with 4 nodes (t∗,τ kt∗+1,τn1 , and T1) produces a reasonable approx-
imation for the benchmark solution, at least with respect to its basic features, it leads to welfare
gains of 4.65 percent relative to 4.74 percent in the benchmark results. In this section, we use this
approximation to explore the effects of changing the planner’s degree of inequality aversion.

38We can also calculate the path of Θt, which we displayed in a figure in the Online Appendix.
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Figure 6: Optimal Fiscal Policy with 4 nodes
Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with 17 nodes (bench-
mark); Solid line: optimal transition with 4 nodes.

All the results presented so far used the same social welfare function: the utilitarian one,
which places equal Pareto weights on each agent. This implies a particular social preference with
respect to the equality versus efficiency trade-off. Here we consider different welfare functions that
rationalize different preferences about this trade-off. With this in mind we propose the following
function

W σ̂ =

(∫
x̄ (a0, e0)

1−σ̂ dλ0

) 1
1−σ̂

,

where λ0 is the initial distribution of individual states (a0, e0), x̄ denotes the individual certainty
equivalents of labor-consumption composite (given a particular initial state (a0, e0)), and, fol-
lowing Benabou (2002), we call σ̂ the planner’s degree of inequality aversion. First notice that
if σ̂ = σ (the agents’ degree of risk aversion), maximizing W σ is equivalent to maximizing
the utilitarian welfare function 39. If σ̂ = 0, then maximizing W 0 is equivalent to maximizing
(1 + ∆L) (1 + ∆I), that is, the planner has no redistributive concerns and focuses instead in the
reduction of distortions and the provision of insurance40. Finally, as σ̂ → ∞ the welfare func-

39Notice that
(∫

x̄ (a0, e0)
1−σ

dλ0

) 1
1−σ is a monotonic transformation of

∫ x̄(a0,e0)
1−σ

1−σ
dλ0, which is equivalent

to the utilitarian welfare function.
40This result can be established following a similar procedure to the one used in proof of Proposition 3. The Online
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tion approaches W∞ = min (x̄ (a0, e0)). Hence, by choosing different levels for σ̂ we can place
different weights on the equality versus efficiency trade-off, from the extreme of completely ig-
noring equality (σ̂ = 0), passing through the utilitarian welfare function (σ̂ = σ), and in the limit
reaching the Rawlsian welfare function (σ̂ → ∞). Table 9 displays the results for different levels
of σ̂.

Table 9: Controlling the degree of inequality aversion

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Degree of Inequality Aversion. Benchmark: σ̂ = 2

σ̂ = 0.0 0 34.6 12.2 0.0 79.8 0.59 5.49 -2.87 -1.83
σ̂ = 1.0 19 49.9 10.1 2.9 -36.4 4.57 3.86 -3.94 4.80
σ̂ = 2.0∗ 26 49.7 10.8 3.6 -62.9 4.65 3.09 -3.94 5.66
σ̂ = 3.0 29 49.7 10.4 3.5 -76.8 4.64 3.00 -4.09 5.93
σ̂ = 4.0 30 48.9 11.5 4.1 -76.0 4.61 2.61 -3.86 6.05
σ̂ = 5.0 32 49.2 11.3 4.0 -84.2 4.59 2.53 -3.95 6.21

Notes: When σ̂ = 2 = σ the welfare function is utilitarian, this is the solution plotted in Figure 6. The values for
T/Y and B/Y are the ones from the final steady state. For the welfare decomposition we use the utilitarian welfare
function for comparability.

When σ̂ = 0 the planner has no redistributive motive and, accordingly, t∗ = 0 which is
consistent with the results displayed above, in particular in Section 5. The benchmark result that
capital taxes should be held fixed at the upper bound for the initial periods is inherently linked to
the redistributive motive of the planner. It follows that higher σ̂ imply higher t∗’s (lower lump-
sum-to-output ratios and higher debt-to-output ratios). Otherwise, overall, specially for σ̂ ≥ 1,
the results do not change significantly with changes in σ̂. In particular, the final levels of capital
and labor taxes are remarkably similar.

7 Robustness
In this section we use the same 4-node approximation used in the previous one to evaluate the
robustness of the results with respect to the labor income process and key elasticities.

7.1 Labor income process
The labor income process (summarized by the Markov matrix, Γ, and the vector of productivity
levels, e) is a key determinant of the amount of uncertainty and inequality faced by agents in

Appendix contains the proof.
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Table 10: Robustness

t∗ τ k τn T/Y B/Y ∆ ∆L ∆I ∆R

Labor Income Process. Benchmark: ρ = 0.9, σε = 0.2

ρ = 0.85 24 34.8 4.8 0.0 -100.1 5.43 4.97 -3.86 4.47
ρ = 0.95 21 42.8 11.5 3.7 -49.5 3.90 3.54 -3.29 3.76
σε = 0.15 28 28.1 4.9 0.1 -126.3 5.64 4.67 -4.16 5.32
σε = 0.25 34 57.8 11.6 4.7 -75.9 4.52 2.55 -4.32 6.52

Degree of Relative Risk Aversion and Frisch Elasticity. Benchmark: σ = 2, κ = 0.72

σ = 1.0 12 25.0 9.9 0.3 -21.7 3.75 5.82 -3.44 1.54
σ = 3.0 50 74.4 10.0 5.1 -93.2 6.75 1.90 -3.80 8.90
κ = 0.5 24 49.6 15.5 5.5 -52.5 3.45 1.11 -2.68 5.14
κ = 1.0 28 45.8 6.3 2.0 -84.8 6.22 6.21 -5.48 5.97

Benchmark 26 49.7 10.8 3.6 -62.9 4.65 3.09 -3.94 5.66

the economy. These parameters are a discrete approximation for a continuous process for labor
income, lit ≡ wetnt, that is

log (lit+1) = ρ log (lit) + ε, where ε ∼ N
(
0, σ2

ε

)
.

In our benchmark calibration we target ρ = 0.9 and σε = 0.2. Given the importance of these
choices for our results and the lack of consensus in the literature about them (see Section 3.4 for a
discussion), we provide here the results for alternative numbers for ρ and σε. For each of these we
recalibrate the economy modifying only the corresponding target, Table 10 contains the results.

As one would expect, the magnitudes of the results do change considerably given changes in
these important parameters. However, reassuringly, the qualitative features of the fiscal policy
instruments and of where the welfare gains come from is not substantially affected.

7.2 Labor supply and intertemporal elasticities
One parameter, σ, determines three important aspects of our benchmark experiment: the agents’
intertemporal elasticity of substitution and relative risk aversion, and the planner’s degree of in-
equality aversion. Table 10 contains the results for other choices of this parameter and also for
different levels of Frisch elasticity.

When σ is reduced from 2 to 1, the planner’s inequality aversion is reduced and, accordingly,
capital income taxes are kept at the upper bound for less periods (t∗ goes from 26 to 12). Moreover,
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the agents’ intertemporal elasticity of substitution increases and their risk aversion is reduced
which implies that long-run capital taxes lead to, at the same time, higher distortions and less
benefits. It follows that the optimal long-run capital tax is lower. This leads to a higher proportion
of welfare gains coming from the level effect and less coming from redistribution. The opposite
happens when σ is increased to 3. Intuitively, a higher Frisch elasticity implies a lower optimal
labor income tax and a higher associated level effect. Notice that these results are in line with the
propositions established in Section 1.

8 Conclusion
In this paper we quantitatively characterize the solution to the Ramsey problem in the standard
incomplete markets model. We find that even though the planner has the ability to obtain all
revenue via non distortive lump-sum taxes, it chooses instead to tax capital income heavily and
labor income to a lesser extent. Moreover, we show that it is beneficial for the government to
accumulate assets over time. By decomposing the welfare gains we diagnose that, relative to
the current US tax system, this policy leads to an overall reduction of the distortions of agent’s
decisions, to a substantial amount of redistribution and to a reduction in the amount of insurance
provided by the government. Importantly, we also show that disregarding the transitory dynamics
and focusing only on steady states can lead to severely misleading results.

Finally, we do not view our results as a final answer to our initial question: to what extent
should governments use fiscal policy instruments to provide redistribution and insurance? Instead,
we understand it as a contribution to the debate. The model we use abstracts from important as-
pects of reality, as any useful model must, and we miss some important dimensions. For instance,
in the model studied above an agent’s productivity is entirely a matter of luck, it would be inter-
esting to understand the effects of allowing for human capital accumulation. We also assume the
government has the ability to fully commit to future policies, relaxing this assumption could lead
to interesting insights.
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Appendix
This appendix presents concise versions of the proofs. Extensive versions with more details are
contained in a separate Online Appendix which can be found in our websites.41

A Proofs for two-period economies
A.1 Uncertainty economy

Define τ kR ≡ rτ k/ (1 + r). Six equations determine a tax distorted equilibrium (K,nL, nH , r, w;

τn, τ kR, T ) according to Definition 1: the first order conditions of the agent’s problem (one in-
tertemporal and two intratemporal), the first order conditions of the firm’s problem

r = fK (K,N) , and w = fN (K,N) , where N = πeLnL + (1− π) eHnH (8.1)

and the government’s budget constraint. Using equation (8.1) to substitute out for r and w we
are left with a system of four equations that any vector

(
K,nL, nH , τ

n, τ kR, T
)

of equilibrium
values must satisfy. The two degrees of freedom are a result of the fact that the planner has three
instruments

(
τn, τ kR, T

)
that are restricted by one equation, the government’s budget constraint.

Defining welfare by

W ≡ u (ω −K, n̄) + βE
[
u
(
(1− τn) fN (K,N) eini +

(
1− τ kR

)
fK (K,N)K + T

)
, ni
]

and totally differentiating the four equilibrium equations together with this definition and making
the appropriate simplifications using Assumption 1 we obtain the following equation (the algebra
is tedious and, therefore, suppressed42):

dW = Θndτn +Θkdτ kR,

where Θn and Θk are complicated functions of equilibrium variables43.

Lemma 2 Under Assumption 1, in equilibrium nH > nL and uc (cL, nL) > uc (cH , nH).

The proof of this Lemma is contained in the Online Appendix.

Proof of Proposition 1. First notice that the optimal tax system must satisfy Θn = 0 and Θk = 0,
otherwise there would exist variations in

(
τn, τ kR

)
∈ (−∞, 1)2 that would increase welfare. Θk =

41http://www.dyrda.info/ or http://sites.google.com/site/marcelozouainpedroni/
42Mathematica codes that compute all the algebraic steps are available in our websites.
43Here are the exact formulas:

Θk ≡ fKKUc

Φ

{
fNfKNN [(1− τn) (Vc − Uc) + τnκUc] + τkRfK (fN + fKNKκ)Uc

}
.

Θn ≡ fNN

(1− τn)Φ
{
(
1− τkR

)
f2
KfNK

[
(1− τn)

(
Ucc (Uc − Vc) + τkR (Vcc − Ucc)Uc

)
−
(
1− τkR

)
τnκUccUc

]
+ fN [(1− τn) (Vc − Uc) + τnκUc]

[(
1− τkR

)
fKNNUc −Ku0

cc

]
+
(
1− τkR

)
τkRfKNfKKκU2

c }.

41
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0 simplifies to θk1 + θk2τ
n + θk3τ

k
R = 0 where

θk1 ≡ fNfKNN (Vc − Uc) , θk2 ≡ fNfKNN ((1 + κ)Uc − Vc) , and θk3 ≡ fK (fN + κfKNK)Uc.

Solving this equation for τ kR, substituting it in Θn = 0 and simplifying entails

Vc (1− τn)− Uc (1− (1 + κ) τn) = 0.

Solving for τn we obtain equation (1.1) and substituting it back in the equation for τ kR we obtain
τ kR = 0; and, therefore, τ k = 0. This is the only pair

(
τn, τ kR

)
∈ (−∞, 1)2 that solves the system

Θn = 0 and Θk = 0. The fact that the optimal level of τn > 0 follows from Lemma 2.

A.2 Inequality economy

The proof of Proposition 2 is entirely analogous and for that reason suppressed here. It can be
found in the Online Appendix.

B Welfare decomposition
Let v (x) ≡ u (c, n) where x is the consumption-labor composite defined in Section 4.4 and u is
defined in (3.1). Consider a policy reform. Denote by xRt (a0, e

t) the equilibrium consumption-
labor composite path of an agent with initial assets a0 and history of productivities et if the reform
is implemented. Let xNRt (a0, e

t) be the equilibrium path in case there is no reform. The average
welfare gain, ∆, that results from implementing the reform is defined as the constant percentage
increase to xNRt (a0, e

t) that equalizes the (utilitarian) welfare to the value associated with the
reform, that is,∫

E0

[
U
(
(1 + ∆)

{
xNRt

(
a0, e

t
)})]

dλ0 (a0, e0) =

∫
E0

[
U
({
xRt
(
a0, e

t
)})]

dλ0 (a0, e0) ,
(8.2)

where λ0 is the initial distribution over states (a0, e0) and U ({xt (a0, et)}) ≡
∑∞

t=0 β
tv(xt(a0

, et)) =
∑∞

t=0 β
tu (ct (a0, e

t) , nt (a0, e
t)).

where

Uc ≡ β [πuc (cL, nL) + (1− π)uc (cH , nH)] , Ucc ≡ β [πucc (cL, nL) + (1− π)ucc (cH , nH)] ,

Vc ≡ β
[
πuc (cL, nL)

eLnL

N
+ (1− π)uc (cH , nH)

eHnH

N

]
,

Vcc ≡ β
[
πucc (cL, nL)

eLnL

N
+ (1− π)ucc (cH , nH)

eHnH

N

]
,

Φ ≡
(
1− τkR

) (
fKfNfKNKN ((1− τn) (Vcc − Ucc) + τnκUcc) + (fN + fKNKκ) f2

KKUcc − fNfKNNUc

)
+ (fN + fKNKκ)Ku0

cc.
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Define
Xj
t ≡

∫
xjt
(
a0, e

t
)
dλjt

(
a0, e

t
)

, for j = R,NR.

to be the average level of x at each t. Then, the level effect, ∆L, is

U
(
(1 + ∆L)

{
XNR
t

})
= U

({
XR
t

})
, (8.3)

In order to define the other two components we need some previous definitions. Let x̄j (a0, e0)
denote the individual consumption-labor certainty equivalent,

U
({
x̄j (a0, e0)

})
= E0

[
U
({
xjt
(
a0, e

t
)})]

, for j = R,NR, (8.4)

(notice that x̄j (a0, e0) can be chosen to be constant) and let X̄j be the aggregate consumption-
labor certainty equivalent,

X̄j =

∫
x̄j (a0, e0) dλ (a0, e0) , for j = R,NR. (8.5)

The insurance effect, ∆I , is defined by

1 + ∆I ≡
1− pRunc
1− pNRunc

, where U
((
1− pjunc

) {
Xj
t

})
= U

({
X̄j
})

, (8.6)

and the redistribution effect, ∆R, by

1 + ∆R ≡ 1− pRine
1− pNRine

, where U
((
1− pjine

) {
X̄j
})

=

∫
U
({
x̄j (a0, e0)

})
dλ (a0, e0) . (8.7)

The following proposition holds44.

Proof of Proposition 3. First notice that v (x) ≡ u (c, n) where u is the GHH utility function,
defined in (3.1), satisfies the following regularity property: there exists a totally multiplicative
function h : (i.e. h (ab) = h (a)h (b), and h (a/b) = h (a) /h (b)) such that for any scalar α,

v (αx) = h (α) v (x) . (8.8)
44This result is similar to the one introduced by Benabou (2002) and used in Floden (2001).
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Hence, suppressing the dependence on (a0, e0), we obtain:∫
E0U

({
xRt
})

dλR0
(8.4)
=

∫
U
({

x̄R
})

dλR0
(8.7)
= U

((
1− pRine

) {
X̄R
}) (8.8)

= h
(
1− pRine

)
U
({

X̄R
})

(8.6)
= h

(
1− pRine

)
U
((
1− pRunc

) {
XR
t

}) (8.8)
= h

((
1− pRine

) (
1− pRunc

))
U
({

XR
t

})
(8.3)
= h

((
1− pRine

) (
1− pRunc

))
U
(
(1 + ∆L)

{
XNR
t

})
(8.8)
= h

(
(1 + ∆L)

(
1− pRine

) (
1− pRunc

))
U
({

XNR
t

})
(8.8)
= h

(
(1 + ∆L)

(
1− pRine

) (1− pRunc
)

(1− pNRunc)

)
U
((
1− pNRunc

) {
XNR
t

})
(8.6)
= h

(
(1 + ∆L) (1 + ∆I)

(
1− pRine

))
U
({

X̄NR
})

(8.8)
= h

(
(1 + ∆L) (1 + ∆I)

(
1− pRine

)(
1− pNRine

))U
((
1− pNRine

) {
X̄NR

})
(8.7)
= h ((1 + ∆L) (1 + ∆I) (1 + ∆R))

∫
U
({

x̄NR
})

dλNR0

(8.6)
= h ((1 + ∆L) (1 + ∆I) (1 + ∆R))

∫
E0U

({
xNRt

})
dλNR0

(8.8)
=

∫
E0U

(
(1 + ∆R) (1 + ∆I) (1 + ∆L)

{
xNRt

})
dλNR0 .

The result follows from the definition of ∆ in equation (8.2).

C Proofs for complete market economies
The proofs follow straight-forwardly the approach introduced by Werning (2007). Hence, for
details on the logic behind the procedure we refer the reader to Online Appendix , here we focus
mainly on the parts that comprise our value added. We depart from Werning (2007) in following
ways: we use the GHH utility function (whereas he studies the separable and Cobb-Douglas cases),
we do not allow the Ramsey planner to choose time zero policies and impose an upper bound of
1 for capital income taxes. These departures make the Ramsey planner’s problem comparable to
our benchmark experiment. The restriction on time zero policies is particularly important because
it prevents the planner from confiscating the (potentially unequal) initial capital levels eliminating
the corresponding redistribution motives.

Consider Economy 4 as described in Section 5. For simplicity, we assume that agents are
divided into a finite number of types i ∈ I of relative size πi. Type i has an initial asset position
of ai,0 and a productivity level of ei. Let pt denote the price of the consumption good in period
t in terms of period 0. Since markets are complete we can write down the present value budget
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constraint of the agent (remember that τ c is a parameter),

∞∑
t=0

pt ((1 + τ c) ci,t + ai,t+1) ≤
∞∑
t=0

pt ((1− τnt )wteini,t +Rtai,t + Tt) ,

whereRt ≡ 1+
(
1− τ kt

)
rt. Rule out arbitrage opportunities by setting pt = Rt+1pt+1, and define

T ≡
∑∞

t=0 ptTt. Then, the budget constraint simplifies to

∞∑
t=0

pt ((1 + τ c) ci,t − (1− τnt )wteini,t) ≤ R0ai,0 + T . (8.9)

Similarly, the government’s budget constraint simplifies to

R0B0 + T +
∑
t

ptG =
∑
t

pt
(
τ cCt + τnt wtNt + τ kt rtKt

)
. (8.10)

The resource constraint is given by

Ct +G+Kt+1 = f (Kt, Nt) , for all t ≥ 0. (8.11)

Definition 6 Given {ai,0},K0,B0 and
(
τn0 , τ

k
0 , T0

)
, a competitive equilibrium is a policy {τnt , τ kt ,

Tt}∞t=1, a price system {pt, wt, rt}∞t=0, and an allocation {ci,t, ni,t, Kt+1}∞t=0, such that: (i) agents
choose {ci,t, ni,t}∞t=0 to maximize utility subject to budget constraint (8.9) taking policies and
prices (that satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits; (iii) the government’s
budget constraint (8.10) holds; and (iv) markets clear: the resource constraints (8.11) hold.

Given aggregate levelsCt andNt, individual consumption and labor supply levels can be found
by solving the following static subproblem

U (Ct, Nt;φ) ≡ max
ci,t,ni,t

∑
i

πiφiu (ci,t, ni,t) s.t.
∑
i

πici,t = Ct and
∑
i

πieini,t = Nt

(8.12)
where u is given by equation (3.1), for some vector φ ≡ {φi} of market weights φi ≥ 0. Let
cmi,t (Ct, Nt;φ), and nmi,t (Ct, Nt;φ) be the argmax of this problem. It can be shown that45

45Where constants are defined as follows:

ωc
i ≡ (φi)

1
σ∑

j πj (φj)
1
σ

, ωn
i ≡ (ei)

κ∑
j πj (ej)

1+κ , Ωc ≡

(∑
i

πi (φi)
1
σ

)σ

, and Ωn ≡

∑
j

πj (ej)
1+κ

− 1
κ

45



cmi,t (Ct, Nt;φ) = ωciCt + χ
κ

1 + κ

(
(ωni )

1+κ
κ − ωciΩ

n
)
(Nt)

1+κ
κ

nmi,t (Ct, Nt;φ) = ωni Nt

U (Ct, Nt;φ) =
Ωc

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

Then, implementability constraints can be written as

∞∑
t=0

βt(UC (Ct, Nt;φ) c
m
i,t (Ct, Nt;φ) + UN (Ct, Nt;φ) ein

m
i,t (Ct, Nt;φ)) (8.13)

= UC (C0, N0;φ)

(
R0ai,0 + T

1 + τ c

)
for all i ∈ I

Proposition 7 An aggregate allocation {Ct, Nt, Kt+1}∞t=0 can be supported by a competitive equi-
librium if and only if the resource constraints (8.11) hold and there exist market weights φ and
a lump-sum tax T so that the implementability conditions (8.13) hold for all i ∈ I . Individual
allocations can then be computed using functions cmi,t and nmi,t, prices and taxes can be computed
using the usual equilibrium conditions.

The Ramsey problem is that of choosing policies
{
τnt , τ

k
t , Tt

}∞
t=1

, taking {ai,0}, K0, B0 and(
τn0 , τ

k
0 , T0

)
as given, to maximize a weighted sum of the individual utilities,

∞∑
t=0

βtπiλiu (ci,t, ni,t) , (8.14)

where {λi} are the welfare weights normalized so that
∑

i πiλi = 1 with λi ≥ 0, subject to
allocations and policies being a part of a competitive equilibrium and τ kt ≤ 1 for all t ≥ 1.

First notice that in equilibrium it must be that UC (t) = β
(
1 +

(
1− τ kt+1

)
rt+1

)
UC (t+ 1), so

that
UC (t) ≥ βUC (t+ 1) , (8.15)

is equivalent to τ kt+1 ≤ 1. Moreover, notice that τ k0 and T0 have not been substituted out in the
implementability constraint. The fact that τn0 is given together with the equilibrium condition
(1− τn0 )w0 = −UN (0) /UC (0) is equivalent to

N0 = N̄0, (8.16)

where N̄0 is defined implicitly as a function of variables given to the Ramsey planner,

(1− τn0 ) fN
(
K0, N̄0

)
= Ωnχ

(
N̄0

) 1
κ .
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Finally, we can use Proposition 7 to rewrite the Ramsey problem as that of choosing {Ct,
Nt+1, Kt+1}∞t=0, T , and φ to maximize (8.14) subject to (8.11) for all t ≥ 0, (8.13) for all i ∈ I

with multiplier µi, (8.15) for all t ≥ 0 with multiplier ηt, and (8.16). Equivalently, we can write
it as that of solving the following auxiliary problem

max
{Ct,Nt+1,Kt+1}∞t=0,T,φ

∞∑
t=0

βtW (Ct, Nt;φ, µ, λ)− UC (C0, N0;φ)
∑
i∈I

πiµi

(
R0ai,0 + T

1 + τ c

)
,

subject to (8.11) for all t ≥ 0, (8.15) for all t ≥ 0, and (8.16), where

W (Ct, Nt;φ, µ, λ) ≡
∑
i

πi{λiu
(
cmi,t (Ct, Nt;φ) , n

m
i,t (Ct, Nt;φ)

)
+ µi

(
UC (Ct, Nt;φ) c

m
i,t (Ct, Nt;φ) + UN (Ct, Nt;φ) ein

m
i,t (Ct, Nt;φ)

)
}.

With some algebra it can be shown that46

W (Ct, Nt;φ, µ, λ) =
1

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)−σ

∗
(
ΦCt − (Φ + (1− σ)Ψ)Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)
(8.17)

Define R∗
t ≡ 1 + rt and

η−1 ≡
R0

β (1 + τ c)

∑
i

πiµiai,0,

and first order conditions (for the following proofs we need only necessary conditions) together
with equilibrium conditions imply the following equations47

∑
i

πiµi = 0 (8.18)

τnt + τ c

1 + τ c
=

ΨΘt

ΦΘt +Ψ(σ +Θt) + Υtσ (βηt−1 − ηt)
, for t ≥ 1 (8.19)

Rt+1

R∗
t+1

=
ΦΘt+1 +Ψσ +Υt+1σ (βηt − ηt+1)

ΦΘt +Ψσ +Υtσ (βηt−1 − ηt)

Θt

Θt+1

, for t ≥ 0 (8.20)

46Where constants are defined as follows:

Φ ≡ (Ωc)
σ−1
σ

∑
i

πi(φi)
1
σ

(
λi

φi
+ (1− σ)µi

)
, and Ψ ≡ Ωc

κ

∑
j

πjµjejω
n
j .

47Where Υt ≡ Ωc/(1− σ)Ωnχ κ
1+κ (Nt)

1+κ
κ .

47



Notice that Υt > 0 and Θt > 0, for all t ≥ 0.

C.1 Economy 2

Lemma 3 If ei = 1 for all i ∈ I , then Ψ = 0 and Φ > 0.

Proof. If ei = 1 for all i ∈ I , then it follows from the definition of Ψ that

Ψ =
Ωc

κ

∑
j πjµj (ej)

1+κ∑
j πj (ej)

1+κ =
Ωc

κ

∑
j πjµj∑
j πj

= 0,

where the last equality follows from equation (8.18). Since Ψ = 0, it follows from equation (8.17)

that

W (Ct, Nt;φ, µ, λ) =
Φ

1− σ

(
Ct − Ωnχ

κ

1 + κ
(Nt)

1+κ
κ

)1−σ

.

If Φ ≤ 0 it would be optimal to set Ct = 0 for all t ≥ 0 which cannot be a solution to the initial
Ramsey problem.

Proof of Proposition 4. Using Lemma 3, from equation (8.19) it follows that

τnt = −τ c, for t ≥ 1.

Next, suppose ηt = 0, for all t ≥ 0. Then, it follows from (8.20) that τ k1 < 1 if

− 1

β

ΦΘ0

Υ0σ
≡ P1 < η−1 < M1 ≡

1

β

(R∗
1 − 1)ΦΘ0

Υ0σ
,

and that τ kt = 0 for t ≥ 2. Hence, if P1 < η−1 < M1, the constraints will in fact never be binding.
Now, suppose ηt > 0, for t ≤ t∗ − 2 and ηt = 0, for all t ≥ t∗ − 1, then it follows from (8.20) that
τ kt∗ < 1 if

−
t∗∑
τ=1

1

βτ
ΦΘτ−1

Υτ−1σ
≡ Pt∗ < η−1 < Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1

Υτ−1σ
,

and that τ kt = 0 for t ≥ t∗+1. The result follows from the fact that η−1 is finite, limt→∞ Pt = −∞
and limt→∞Mt = ∞.
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C.2 Economy 3

Proof of Proposition 5. In this economy there is no heterogeneity in initial levels of asset, i.e.
ai,0 = a0 for all i ∈ I . Then it follows that

η−1 =
R0

β (1 + τ c)

∑
i

πiµiai,0 =
R0

β (1 + τ c)
a0
∑
i

πiµi = 0

where the last equality follows from equation (8.18). Since here we assume that τ kt does not have
to be bounded by 1, it follows that ηt = 0 for all t ≥ 1. Then, equation (5.1) follows directly from
equation (8.19), (5.2) from its derivative with respect to Θt, and (5.3) from equations (8.19) and
(8.20).

C.3 Economy 4

Proof of Proposition 6. Equation (5.3) can be established for all t ≥ 1, by substituting (8.19)

into (8.20). The existence of a t∗ such that ηt > 0, for t < t∗ − 1 and ηt = 0, for all t ≥ t∗ − 1,
follows from a very similar logic to the one used in the proof of Proposition 4, which we suppress
here48. Hence, for t ≥ t∗ we can obtain τnt by using (5.1), which follows from (8.19) with ηt = 1.
For the same time period τ kt can then be found by using (5.3). Now, having τnt∗ we can use the fact
that τ kt = 1 and (5.3) moving backwards to obtain τnt for t < t∗.

48With

Pt∗ ≡ −
t∗∑

τ=1

1

βτ

ΦΘτ−1 +Ψσ

Υτ−1σ
, and Mt∗ ≡

t∗∑
τ=1

1

βτ

(∏t∗

t=τ R
∗
t − 1

)
ΦΘτ−1 +

(
Θτ−1

Θt∗

∏t∗

t=τ R
∗
t − 1

)
Ψσ

Υτ−1σ
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Figure 7: Aggregates: Benchmark
Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition.
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