
Simple Consumption / Savings Problems (based on Ljungqvist &
Sargent, Ch 16, 17)

Jonathan Heathcote

updated, March 2006

1. The household’s problem

maxE
∞X
t=0

βtu (ct)

subject to for all t
ct + at+1 = wet + (1 + r)at

at+1 ≥ −φ
ct ≥ 0

given a0, where et ∈ E = {e1, e2, e3, ..., eN} follows a first order Markov process with
transition probabilities given by anN×N transition probability matrix Π. The utility
function u is strictly increasing, strictly concave, twice continuously differentiable.

2. The value function and first order condition
The state variables for the household are a and e. In recursive form, the household’s
problem is described by the following Bellman’s equation.

V (a, e) = max
a0

"
u(c) + β

X
e0

π(e0|e)V (a0, e0)
#

such that
c = we+ (1 + r)a− a0

a0 ≥ −φ
FOC wrt a0

−u0(c) + β
X
e0

π(e0|e)V1(a0, e0) ≤ 0

Envelope condition
V1(a, e) = (1 + r)u0(c)

Euler equation

u0(c) ≥ β(1 + r)
X
e0

π(e0|e)u0(c0) = if a0 ≥ −φ

1
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3. The borrowing constraint
Where does φ come from?
Impose ct ≥ 0 and iterate the budget constraint forwards

ct ≥ 0⇒ wet + (1 + r)at − at+1 ≥ 0

⇒ at ≥
at+1 − wet
(1 + r)

at ≥
at+2−wet+1

(1+r)
− wet

(1 + r)

at ≥ −
1

(1 + r)

∞X
j=0

wet+j (1 + r)−j = −
∞X
j=1

wet+j−1 (1 + r)−j

The constraint is more naturally expressed as a limit on at+1, so updating one
period gives

at+1 ≥ −
∞X
j=1

wet+j (1 + r)−j

Now the right hand side of this equation is a random variable. We could introduce
an expectation sign, but then if a household borrows up to the limit and receives a
sequence of bad shocks then it will be unable to repay and maintain positive con-
sumption. Thus it seems reasonable to impose that the constraint holds almost surely
in which case we can replace et+j with e1 which gives

at+1 ≥ −
we1
r

Of course we could easily impose an additional exogenous constraint that says
that debt cannot exceed some limit b. In this case the effective borrowing limit will
be given by

φ = min
³
b,
we1
r

´
4. Non-stochastic case

4.1. β(1 + r) = 1 and φ = 0. Euler equation simplifies to

u0(c) ≥ u0(c0)

which, since u is strictly concave, implies

c0 ≥ c

Along the optimal path either c∗t = c∗t−1 or c
∗
t > c∗t−1 and c∗t−1 = wet.
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• Why would the household never choose c∗t < c∗t−1? (we discussed this in class)

The optimal consumption path converges to a positive finite limit when the agent
reaches the period with the highest annuity value of the remainder of the income
process.

c
1 + r

r
= sup

t

Ã
∞P
j=0

(1 + r)−jwet+j

!
The LHS of this equation is the present value of consumption given constant con-
sumption c, the RHS is the present value of lifetime earnings. The intuition for
this result is as follows. As time evolves every so often the borrowing constraint
binds. Each time it binds the agent has zero assets at the start of the next period
(at+1 = φ = 0). If the agent faced an arbitrarily loose borrowing constraint, she
would like to set consumption at this date (t + 1) equal to a constant, the present
value of lifetime earnings. At the t+1 when lifetime earnings are maximized, such a
strategy is feasible, even when φ = 0 (proof in LS).

4.2. φ is natural borrowing constraint in non-stochastic case. In the non-
stochastic case, if the borrowing constraint is the natural borrowing constraint, it will
never be binding. The natural borrowing constraint in this case is

at+1 ≥ −
∞X
j=1

wet+j (1 + r)−j

If the constraint never binds, consumption will be constant from any initial date
t onwards:

ct
1 + r

r
= c

1 + r

r
=

∞P
j=0

(1 + r)−jwet+j + (1 + r)at

The LHS is the present value of lifetime consumption given ct = c for all t. The
RHS is the present value of lifetime earnings plus initial wealth at date t. Given this
strategy, at each date t, it is straightforward to show that if at satisfies the natural
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borrowing constraint, so does at+1 :

at+1 = wet + (1 + r)at − ct

= wet + (1 + r)at −
r

1 + r

Ã
∞P
j=0

(1 + r)−jwet+j + (1 + r)at

!

= wet + at − r

Ã
∞P
j=1

wet+j−1(1 + r)−j

!

≥ wet −
∞P
j=1

wet+j−1 (1 + r)−j − r

Ã
∞P
j=1

wet+j−1(1 + r)−j

!

= wet − (1 + r)

Ã
wet
1 + r

+
∞X
j=2

wet+j−1 (1 + r)−j
!

= −
∞P
j=1

wet+j (1 + r)−j

(in the second line, I plugged in the expression for ct, in the fourth I used the fact
that at has to satisfy the natural borrowing constraint)

5. Stochastic case
• Can we expect similar results in the stochastic case?
No. If β(1 + r) = 1 and φ = 0 then household asset holdings and consumption

converge almost surely to infinity. We will show this three different ways, under
different sets of assumptions

5.1. Approach 1: assumemarginal utility is convex. Assume that u000(c) > 0
(ie assume the function u0(c) is convex)
The household’s first order condition is

u0(c) ≥ β(1 + r)
X
e0

π(e0|e)u0(c0(e0)) =
X
e0

π(e0|e)u0(c0(e0))

We want to show that consumption is increasing in expected terms. If we can
do so for the case in which the FOC is an equality, it will follow immediately that
consumption must be increasing in expected terms when the constraint is binding
(since current consumption when the constraint is binding is lower than when it is
not binding).
Now the marginal utility of consumption is a convex function. Thus by Jensen’s

inequality X
e0

π(e0|e)u0(c0(e0)) ≥ u0

ÃX
e0

π(e0|e)c0(e0)
!
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Combining these two inequalities

u0(c) ≥ u0

ÃX
e0

π(e0|e)c0(e0)
!

But the marginal utility of consumption is decreasing (by concavity) so

c ≤
X
e0

π(e0|e)c0(e0)

In other words consumption tomorrow is larger than consumption today in ex-
pected terms. Since this applies at every date, consumption will continually ratchet
upwards. A corollary is that consumption will never converge to a constant level,
contrary to the case without uncertainty.

5.2. Approach 2: Martingales. A stochastic process {qt} that has the property
that

qt = Et (qt+1)

is called a martingale. In words, the best predictor of the variables future value is its
current value.
A stochastic process {qt} that has the property that

qt ≥ Et (qt+1)

is called a supermartingale.
There is a theorem (Doob 1953) that say that non-negative supermartingales

converge almost surely to a non-negative value.
A simple example of a martingale: the gambler’s ruin chain
Two gamblers play the following game. Each period they each bet a dollar, flip a

coin, and if the coin comes up heads player 1 takes the two dollars, while if it is tails
player 2 does so. If one of the players goes bankrupt the game stops.
Let x, the current state of the system, be the number of dollars player 1 has at

some date. The state space is {0, ..., d} where d is the total number of dollars the two
players start out with combined.
Let P (x, y) be a transition function that returns the probability of next period’s

state being y given that the current state is x.
It is clear that

dP
y=0

yP (x, y) = x

x = 0, ..., d.
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Thus the stochastic process for x follows a martingale. (if it is not obvious to you
that the process for x satisfies the above equation, try a few values for x including
x = 0 and x = d, and check it)
One interesting implication regarding finite state Markov processes that are also

martingales is that the extreme elements in the state space are absorbing states. For
example, in the example above, if x = 0, then it must be the case that P (0, y) = 0
for all y 6= 0; ie if state 0 is ever reached, the system will stay in that state with
probability 1.

Using martingale convergence results for the consumption / savings
problem. Returning to our consumption / savings problem, the Euler inequality is

u0(ct) ≥ β(1 + r)Etu
0(ct+1) = if at+1 > −φ

What is the limiting behavior of consumption implied by this equation? In this
case we won’t make any specific assumptions on the third derivative of the utility
function, or the process for shocks.
At first sight this does not look like a martingale, unless we assume that β(1 + r)
But we can rewrite it as a martingale for the general case (β(1+r) 6= 1) by making

a change of variables
Define

Mt = βt(1 + r)tu0(ct) ≥ 0
This implies that

Mt+1 −Mt = βt(1 + r)t [β(1 + r)u0(ct+1)− u0(ct)]

The Euler equation can be rewritten as

Et [Mt+1 −Mt] ≤ 0

which says thatMt is a supermartingale. It is also non-negative because the marginal
utility of optimal consumption cannot be negative. This means (by Doob’s Theorem)
that Mt converges almost surely to a non-negative value.
What does this tell us about the limiting behavior of consumption?
Consider the case β(1+r) > 1. Now ifMt is converging to something, this implies

that u0(ct) must be converging to zero, and therefore (if u is unbounded) that ct
is converging to infinity. (Given the borrowing constraint, this implies that asset
holdings must be converging to infinity too)
Now consider β(1 + r) < 1. In this case Mt might converge to zero even if u0(ct)

does not converge to anything (and remains a finite randomly fluctuating variable).
This is, in fact, a property of the solution.
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Finally consider the case β(1+ r) = 1. Chamberlain and Wilson (2000) show that
ct must also converge to infinity in this case. I will now sketch some intuition for this
result.
What β(1+ r) = 1 the first order condition for the household problem can equiv-

alently be written as
Et [uc,t+1 − uc,t] ≤ 0

We will assume that uc,t converges to a strictly positive limit, and derive a con-
tradiction.
If uc,t converges to a strictly positive limit, then ct must converge to a finite positive

value. But each period the endowment / labor income is stochastic. The only way
consumption could converge to a finite positive value would be if consumption were
less than or equal to the lowest possible present value of total lifetime resources (for
larger values for consumption, there would be a chance that the borrowing constraint
would bind at some future date, requiring consumption to adjust at that date). But
this strategy requires accumulating assets every time et > e1,and it cannot be optimal
to endlessly accumulate assets without every consuming out of them.

5.3. Approach 3: the case of i.i.d shocks. If productivity shocks are i.i.d we
can take a transformation of the state variables to eliminate e as a state variable. In
this case we will prove that if β(1+ r) ≥ 1 there is no upper bound on asset holding.
This goes some way towards showing that consumption does not converge to a finite
constant, and it will be useful later on when we want to construct an equilibrium
with lots of agents subject to idiosyncratic risk.
Let

z = we+ (1 + r)a+ φ

Thus z denotes maximum disposable resources (maximum possible consumption given
e and a, prices w and r, and the borrowing constraint φ). In terms of the single state
variable z the household’s budget set is given by

c+ a0 ≤ z − φ

If the probability distribution over e0 is independent of e, then provided the house-
hold knows z he does not need to know e to solve his optimization problem. In other
words, the household does not care whether the resources he has at his disposal come
from savings he made in the previous period or from his current period endowment
shock.
We can therefore rewrite the value function as follows.

V (z) = max
a0

"
u(c) + β

X
e0

π(e0)V (z0)

#
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c = z − φ− a0

z0 = we0 + (1 + r)a0 + φ

a0 ≥ −φ
Denote the decision rule that solves this problem a0(z).
The envelope condition here is

V 0(z) = u0(c) (1)

Of course, the first order condition must be as before, since we have only changed
notation (if you are not convinced just check for yourself by taking the FOC wrt a0,
and substituting in the envelope condition). Note now that the transition probabilities
do not depend on e.

u0(c) ≥ β(1 + r)
X
e0

π(e0)u0(c0) = if a0 ≥ −φ (2)

Showing that assets are unbounded above is equivalent to showing that z is un-
bounded above, given that e is bounded and w, r, and φ are finite constants.
Note that total resources available next period z0 is increasing in next period’s

endowment e0. Note also that savings are increasing in z - the more resources you
have, the more you want to save. Total resources will remain bounded through time
if there exists a z, denoted zmax, such that for all e0 and for all z ≤ zmax

z0 = we0 + (1 + r)a0(z) + φ ≤ zmax

Since savings are increasing in current resources z, and z0 is increasing in e0, it
suffices to check that

weN + (1 + r)a0(zmax) + φ ≤ zmax

If we can find such a finite zmax then provided that we start out with z0 ≤ zmax,
disposable resources will never exceed zmax.

Showing that β(1 + r) < 1 is necessary for boundedness

Let us assume that there exists a zmax as defined above, and that that β(1+r) ≥ 1.
We will then derive a contradition. This contraction will tell us that for any possible
candidate for zmax, there is a positive probability that resources will increase beyond
zmax.
Substituting the envelope condition 1 into the first order condition 2 we get

V 0(z) ≥ β(1 + r)
X
e0

π(e0)V 0(z0)
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If z = zmax this implies that

V 0(zmax) ≥ β(1 + r)
X
e0

π(e0)V 0(we0 + (1 + r)a0(zmax) + φ)

Since V is strictly concave, V 0 is decreasingX
e0

π(e0)V 0(we0 + (1 + r)a0(zmax) + φ) > V 0(weN + (1 + r)a0(zmax) + φ) ≥ V 0(zmax)

Thus we have shown that

V 0(zmax) > β(1 + r)V 0(zmax)

Now if β(1 + r) ≥ 1 this is a contradiction, which means that there does not
exist a zmax as defined. In other words, however large are a household’s disposable
resources, if β(1+ r) ≥ 1 then for the largest value for e household savings will be so
large that asset holdings and disposable resources will increase. This suggests that zt
will diverge to +∞.
Thus we have shown that β(1 + r) < 1 is a necessary condition for asset holdings

to remain bounded.


