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Stock Price Volatility

• Stock prices are famously volatile
• What drives these fluctuations?
• Shiller (1981) proposed a simple decomposition:

Pt = P ?t︸︷︷︸
fundamental price

+ Φt︸︷︷︸
residual

I Fundamental Price P ?
t : expected cash flows discounted at a constant rate

P ?
t ≡

∞∑
k=1

βkEtCFt+k

I Residual term Φt: everything else (time-varying expected returns)

• Shiller’s conclusion: Pt is much more volatile than P ∗t
• We will explore the same decomposition ...
• ... but conclude that the vast majority of movements in Pt are driven by P ∗t
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The Campbell and Shiller Reframing

• Campbell and Shiller (1987/88) re-framed the excess volatility question

• They asked: do fluctuations in CFt

Pt
reflect time-varying expected cash flow growth or time-varying

expected returns?

• We argue this re-framing was a mistake:

1. Division of Pt+1+CFt+1
Pt

between Pt+1
Pt

and CFt+1
Pt

is arbitrary and depends on “trading strategy”
determining share of the market that investor holds at each date

⇒ extent to which CFt
Pt

forecasts cash flow growth is arbitrary

2. In contrast, P
∗
t

Pt
is independent of the trading strategy.

3. To estimate P∗
t

Pt
all we need is a model for expected returns.

4. We are more interested in understanding fluctuations in Pt as opposed to Pt

CFt
.
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Mechanics of Index Construction

• CRSP provides time series for:
I value-weighted returns without dividends ⇒ price index series Pt :

Rnd
t+1 = Pt+1

Pt

I value-weighted returns with dividends ⇒ dividend series Dt :

Rwd
t+1 = Pt+1 +Dt+1

Pt

⇒ Dt+1 =
(
Rwd

t+1 −Rnd
t+1
)
Pt

I market cap Market_Capt

I divisor St

• Divisor relates prices to market cap:

Pt = Market_Capt
St
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Corporate Actions

• Price series does not perfectly track market cap because of “corporate actions” :

I Capital raising and distribution events: e.g., share repurchases, secondary offerings
I Firm entry and exit from the index: adds, mergers and delists

• Corporate actions change market cap PtSt but not the price index Pt ⇒ they change St
• Thus, Pt tracks portfolio value for a “per share” investor:

I per share investor does not put money into (out of) the market in response to corporate actions
I per share investor owns St share of market at t

• Alternatively, define “aggregate” investor as one who holds constant fraction of market cap:

I puts money in / out whenever corporate actions raise / lower aggregate market cap
I natural macro baseline: representative investor must hold the market
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Trading Strategies

• We call S = {St}∞t=0 a “trading strategy”

I St = 1 ∀t is aggregate investor trading strategy
I St = divisort is per share investor trading strategy
I Many additional possibilities

• Let P̄t = Market_Capt and CF t denote aggregate investor price and cash flow

• For any trading strategy S

Pt(S) = StP̄t

CFt(S) = St−1CF t + (St−1 − St)P̄t
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What Statistics are Invariant to the Trading Strategy?

• Note that
Pt+1(S) + CFt+1(S)

Pt(S) = St+1P̄t+1 + StCF t+1 + (St − St+1)P̄t+1

StP̄t

= CF t+1 + P̄t+1

P̄t

CFt(S)
Pt(S) = St−1CF t + (St−1 − St)P̄t

StP̄t

= CF t

P̄t

+ (St−1 − St)
St

• Thus per share and aggregate investors earn identical one period returns date by date

• But the two investors:

I have different paths for portfolio value
I have different paths for cash flow
I earn different long horizon returns (depending on which of them times the market better)

• Related Papers:
I Bansal and Yaron (2007), Dichev (2007), Boudoukh, Michaely, Richardson and Roberts (2007),

Larraine and Yogo (2008), Koijen and Van Nieuwerburgh (2011), Eaton and Paye (2017), Davydiuk,
Richard, Shaliastovich, Yaron (2023), Pruitt (2025), Atkeson, Heathcote, Perri (2025), . . .
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Alternative Trading Strategies: An Example
Market Cap End t P̄t = PtSt 100
Price Per Share End t Pt 100
Shares Outstanding End t St 1

Free Cash Flow t+ 1 CF t+1 20
= Dividends t+ 1 Dt+1 10
+ Share Repurchases End t+ 1 (St − St+1)Pt+1 10

Market Cap End t+ 1 Pt+1St+1 130
Price Per Share End t+ 1 Pt+1 = Pt+1St+1+(St−St+1)Pt+1

St
140

Shares Outstanding End t+ 1 St+1 = Pt+1St+1
Pt+1

130
140

Aggregate Investor Per Share Investor
pricet P̄t = PtSt 100 Pt 100
cash_flowt+1 CF t+1 20 Dt+1 10
pricet+1 P̄t+1 = Pt+1St+1 130 Pt+1 140
returnt+1

P̄t+1+CF t+1
P̄t

130+20
100

Pt+1+Dt+1
Pt

140+10
100

cash_flowt+1
pricet+1

CF t+1
Pt+1St+1

20
130

Dt+1
Pt+1

10
140
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Per share trading strategy St
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1
The per share trading strategy

• Persistent declines early on as new firms enter
• Stabilization and growth later as share repurchases increase
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Pt and CFt for Aggregate and Per Share Investors
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Indices of Total Market Cap and Price per Share both over PCE
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• P̄t over PCE and CF t over PCE for aggregate investor
• Pt(S) per share over PCE and CFt(S) per share over PCE
• Next: show that P ∗t /Pt is invariant to the choice of measurement
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Revisit Shiller 1981

• Shiller’s decomposition

Pt = P ?t + Φt where P ?t ≡
∞∑
k=1

βkEtCFt+k

• We will estimate a time series for

P ?t (S)
Pt(S) =

∞∑
k=1

βkEt
CFt+k(S)
Pt(S)

• Key result:
∞∑

k=1

βkCFt+k(S)
Pt(S) = 1 +

∞∑
k=0

βk+1
[
Rwd

t+k+1 −
1
β

]
Pt+k(S)
Pt(S)
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Main Result
• Implies solution

P ?t (S)
Pt(S) = 1 +

∞∑
k=0

βk+1Et
[
Et+kRwdt+k+1 −

1
β

]
Pt+k(S)
Pt(S)

I P ?
t (S) = Pt + DPV of value-weighted expected excess returns

• Log linearly approximate around

Et+kRwdt+k+1 = 1
β
, βEt

Pt+k+1(S)
Pt+k(S) = ρ(S)

P ?t (S)
Pt(S) ≈ 1 +

∞∑
k=0

ρ(S)kEt
[
rwdt+k+1 − log

(
1
β

)]
• this is invariant to the trading strategy up to ρ(S)

⇒ Shiller’s measure P?
t (S)
Pt(S) is a good way to frame the “what drives valuations” question
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What About Campbell and Shiller 1988?

• Recent literature typically focuses on cash flow-price ratios CFt(S)
Pt(S)

• Consider the decomposition
CFt(S)
Pt(S) = P ?

t (S)
Pt(S) ×

CFt(S)
P ?

t (S)

P ?
t (S) =

∞∑
k=1

βkEtCFt+k(S)

• Different trading strategies imply very different dynamics for CFt(S)
Pt(S) ...

• ... but P?
t (S)
Pt(S) approximately independent of the trading strategy

• ... so different trading strategies simply translate to different future cash flow dynamics

⇒ Not surprising that different price / cash flow measures ⇒ different variance decompositions

• Statements about the dynamics of particular measures of cash flows and cash flow to price ratios do
not help answer What Drives the Stock Market?
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Estimating P ?
t /Pt

P ?
t

Pt
= 1− Φt

Pt
≈ 1 +

∞∑
k=0

ρkEt

[
rwd

t+k+1 − r̄
]

• All we need to answer what drives valuations is a model for expected returns
• Unfortunately, little consensus on dynamics of expected returns (Goyal and Welch 2008, 2024)
• For Φt to drive significant fluctuations in Pt, long horizon returns must be forecastable. Are they?
• Many classic return predictors are quite transitory ⇒ cannot predict long horizon returns
• But others (e.g., Dt

Pt
= dividends per share / price per share) are very persistent

• Low Dt

Pt
today ⇒ likely low Dt

Pt
in the distant future ⇒ persistently low returns?

• Perhaps, but forecasting long horizon returns using persistent regressors in short samples treacherous
(spurious regression, Stambaugh (1999) bias)

• We argue that persistence in Dt

Pt
driven by corporate actions that are unrelated to expected returns

⇒ additional reason to be skeptical of long run return predictability
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How Predictable Are Returns?
• If Et

[
rwdt+1 − r̄

]
AR1 with persistence ψ, then

P ?t
Pt
≈ 1 +

∞∑
k=0

ρkEt
[
rwdt+k+1 − r̄

]
= 1 + 1

1− ρψEt
[
rwdt+1 − r̄

]
• Two conditions for time-varying expected returns to drive significant price volatility:

1. Var
(
Et

[
rwd

t+1 − r̄
])

must be large (high R2 for one step ahead return forecasts)
2. Persistence ψ of expected returns must be high

• Forecast log returns in excess of PCE growth using regressions of the form:

rt+s =
s−1∑
k=0

rwdt+k+1 = αs + γsPredictort + errort

• Compare Predictort = Ȳt = log
(

1 + CF t

P̄t

)
versus Predictort = Yt = log

(
1 + Dt

Pt

)
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Forecasting Using Per Share Yield
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• Using Ȳt for aggregate investor to forecast returns

horizon one-year five-year ten-year
coefficient γs 2.60 3.85 6.67

t-stat. 3.72 3.06 3.99
R2 0.13 0.10 0.16

• Using Yt for per share investor to forecast returns

horizon one-year five-year ten-year
coefficient γs 2.28 6.66 11.26

t-stat. 1.74 2.90 3.56
R2 0.03 0.09 0.13
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P ∗t using Ȳt
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Total Market Cap and Pstar over PCE

• P̄t = CRSP total market cap over PCE

• P ?t = P̄t

(
1 + 1

1−ρψ
(
γ1Ȳt − r̄

))
with

ρ = 0.98, ψ = 0.47, γ1 = 2.60

• Fluctuations in expected returns not
important driver of price
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Implications of Different Predictors
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• Pt = CRSP total market cap over PCE

• P ?t = P̄t(1 + 1
1−ρψ

(
γ1Ȳt − r̄

)
)

γ1 = 2.60, ρ = 0.98, ψ = 0.47

• P ?t = P̄t(1 + 1
1−ρψ (γ1Yt − r̄))

γ1 = 2.28, ρ = 0.98, ψ = 0.92

• Falling expected returns explain a large part
of stock market runup
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Different views on what drives the stock market

• The aggregate yield Ȳt seems to be a better predictor of returns

• But per share model attributes larger share of price movements to time-varying expected returns

• Mechanically, this is because the per share yield predictor is much more persistent – near unit root

• Thus low current yield ⇒ low expected yield far into the future ⇒ persistent low expected returns in
excess of consumption growth

• Which model should we believe?
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Long Horizon Realized Returns net of PCE Growth
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• No evidence of a trend in realized returns in excess of consumption growth
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Our Hypothesis and Strategy

• Recall that
Dt

Pt
= CF t

P̄t
+ (St−1 − St)

St

• Posit that CF t

P̄t
drives true expected returns

• Posit that (St−1−St)
St

is a persistent process reflecting corporate actions (e.g. share repurchases) that
add persistence to dividend-price ratio

• These corporate actions add noise to signal about expected returns
I high frequency: firms smoothing dividend payments
I low frequency: more equity repurchases following regulatory changes that reduced fear of being charged

with stock price manipulation

• Estimate a model with these properties, show that in simulations Yt appears to forecast long horizon
returns even though, by construction, long horizon returns are not forecastable

• Conclude that price fluctuations almost entirely driven by time-varying expected cash flows.
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Model Estimated
• Model for log returns in excess of consumption growth

rt+1 = γȲt + (1− γ)r̄ + εr,t+1

Ȳt+1 = ψȲt + (1− ψ)r̄ + εY,t+1

I γ controls predictability of one period returns
I ψ controls persistence of expected returns

• Model for corporate actions

Yt = Ȳt −∆st
∆st = χ(Ȳt − r̄) + zt

zt+1 = ρzzt + εz,t+1

I ∆st is log change in St

I χ > 0 allows for yield smoothing: χ = 1 and ρz = 1 ⇒ Yt follows a random walk

• Parameters to estimate: γ, r̄, ψ, χ, ρz, Σ
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Moments Targeted in Estimation

• Average log returns in excess of PCE growth rt
• Mean and variance of aggregate and per share yields Ȳt and Yt
• Var (rt+s) at horizons s up to 15 years

• Var
(
Ȳt+s − Ȳt

)
and Var (Yt+s − Yt) for s = 1, ..., 15

• Cov
(
rt+s, Ȳt+s − Ȳt

)
and Cov (rt+s, Yt+s − Yt) for s = 1, ..., 15

• Regression coefficients from regressing

I rt+s on Ȳt for s = 1, ..., 15
I rt+s on Yt for s = 1, ..., 15
I
(
Ȳt+s − Ȳt

)
on Ȳt for s = 1, ..., 15

I (Yt+s − Yt) on Yt for s = 1, ..., 15
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Model Accounts for Return Predictability with Aggregate Yield
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• estimate γ = 2.03 and ψ = 0.60 ⇒ time-varying expected returns explain little of movements in Pt
• green line is theoretical regression coefficient γ + ψγ + ...+ ψs−1γ

• dotted lines are simulated one standard error bands
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Also Accounts for Return Forecasts with Per Share Yield
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• Simulated model replicates large coefficients and high R2 values at long horizons
• But return forecastability with Yt entirely disappears in 1,000 year simulations

I Low frequency trends in ∆st come to dominate, which are uninformative about returns
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Reproduces that growth in dividends per share not forecastable
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• Cochrane’s (2008) dog is not barking
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Where Does Illusion of Long Horizon Return Predictability Come From?

• Sampling error ⇒ regression coefficients and R2 rise with the return horizon when the predictor
variable is very persistent (Boudoukh, Richardson and Whitelaw, 2008)

I Long horizon returns are naturally very persistent
I Corporate actions make Yt very persistent

• Shocks to returns and to ∆st are positively correlated ⇒ when rt goes up Yt goes down ⇒
Stambaugh (1999) short sample bias

• These potential biases are understood
• Our contributions:

I trace persistence in Yt to trading strategy / dividend smoothing
I reconcile disparate results on return predictability using different predictors
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Conclusion

• To answer What Drives the Stock Market, we must estimate

P ?t
Pt

= 1 +
∞∑
k=0

βk+1Et
[
Rwdt+k+1 −

1
β

]
Pt+k
Pt

• This summarizes all relevant information.

• Dynamics of a particular measure of cash flows (approximately) does not add information.

• P ?t is close to Pt unless expected returns over very long horizons are quite variable.

• Dt

Pt
looks persistent, but persistence reflects mechanical corporate actions:

1. Dividend smoothing (firms repurchase equity when cash flow high)
2. Declining new firm entry + increasing stock repurchases
⇒ ∆st < 0→ ∆st > 0 ⇒ persistent decline in Dt

Pt

• Thus, we are skeptical that there is a large predictable component to long run returns
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A Thought Experiment
• data from N investors in an index fund

I end of month balance Pi,t

I withdrawals that month CFi,t

I same returns with cash flows for everyone

Rwd
t,t+1 = Pi,t+1 + CFi,t+1

Pi,t

• Present value relation holds for each investor

Pi,t =
∞∑
k=1

Et
1

Rwdt,t+k
CFi,t+k

• What drives fluctuations in Pi,t?
I Fluctuations in expected returns (discount rates)?
I Fluctuations in expected future cash flows?

• Does the answer depend on the choice of Pit and CFit?
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