Optimal Progressivity with Age-Dependent Taxation

Jonathan Heathcote

Federal Reserve Bank of Minneapolis

Kjetil Storesletten

University of Oslo

Gianluca Violante

Princeton University

Harvard University

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"

How progressive should labor income taxation be?

- Arguments against progressivity: distortions
 - Labor supply choice
 - Human capital investment

How progressive should labor income taxation be?

- Arguments against progressivity: distortions
 - Labor supply choice
 - Human capital investment
- Arguments in favor of progressivity: missing markets
 - Unequal initial conditions
 - Labor market shocks
 - Increasing age-productivity profile

How progressive should labor income taxation be?

- Arguments against progressivity: distortions
 - Labor supply choice
 - Human capital investment
- Arguments in favor of progressivity: missing markets
 - Unequal initial conditions
 - Labor market shocks
 - Increasing age-productivity profile
- Q: Tagging \rightarrow should optimal progressivity vary with age?

This paper

- OLG equilibrium model with:
 - × flexible labor supply [static choice]
 - × skill investment [dynamic choice]
 - ✓ differential disutility of work & learning ability [ex-ante heter.]
 - ✓ partial insurance against wage risk [ex-post uncertainty]
 - \checkmark age profile for productivity and disutility of work [life cycle]

This paper

- OLG equilibrium model with:
 - × flexible labor supply [static choice]
 - × skill investment [dynamic choice]
 - ✓ differential disutility of work & learning ability [ex-ante heter.]
 - ✓ partial insurance against wage risk [ex-post uncertainty]
 - \checkmark age profile for productivity and disutility of work [life cycle]
- Baseline: analytical model to isolate forces at work
- Extension: numerically solved model with borrowing and saving

TAX FUNCTION

Tax Function

$$T(y) = y - \lambda y^{1-\tau}$$

Tax Function

$$\log(y - T(y)) = \log \lambda + (1 - \tau) \log y$$

Tax Function

$$\log(y - T(y)) = \log \lambda + (1 - \tau) \log y$$

- It preserves analytical tractability
- It closely approximates U.S. tax/transfer system ($\tau^{US} = 0.181$)

Generalized Tax Function

• We generalize tax/transfer system to allow for age variation:

$$T_a(y) = y - \lambda_a y^{1 - \tau_a}$$

Generalized Tax Function

• We generalize tax/transfer system to allow for age variation:

$$T_a(y) = y - \lambda_a y^{1 - \tau_a}$$

• Does the US tax/transfer system display age dependence?

Generalized Tax Function

• We generalize tax/transfer system to allow for age variation:

$$T_a(y) = y - \lambda_a y^{1 - \tau_a}$$

- Does the US tax/transfer system display age dependence?
- Estimate $\{\tau_a\}$ by household age

Related Literature

- Human capital: Best and Kleven (2013), Guvenen, Kuruscu, and Ozkan (2014), Kapicka and Neira (2016), Stantcheva (2017)
- Labor supply: Erosa and Gervais (2002), Karabarbounis (2016), Ndiaye (2017)
- Efficiency profile: Weinzierl (2009), Gorry and Oberfield (2012)
- Uninsurable risk: Farhi and Werning (2013), Golosov, Troshkin, and Tsyvinski (2016)

HSV: Transparency + GE + Transition + Quantitative

ENVIRONMENT

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^A \beta^a u_i(c_{ia}, h_{ia}, G)$$

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^A \beta^a u_i(c_{ia}, h_{ia}, G)$$

$$v_i(s_i) = \frac{1}{(\kappa_i)^{1/\psi}} \cdot \frac{s_i^{1+1/\psi}}{1+1/\psi}$$

$$\kappa_i \sim Exp(1)$$

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^A \beta^a u_i(c_{ia}, h_{ia}, G)$$

$$v_i(s_i) = \frac{1}{(\kappa_i)^{1/\psi}} \cdot \frac{s_i^{1+1/\psi}}{1+1/\psi}$$

$$\kappa_i \sim Exp(1)$$

$$u_{i}(c_{ia}, h_{ia}, G) = \log c_{ia} - \frac{\exp\left[(1+\sigma)\left(\varphi_{i}+\bar{\varphi}_{a}\right)\right]}{1+\sigma} (h_{ia})^{1+\sigma} + \chi \log G$$
$$\varphi_{i} \sim \mathcal{N}\left(\frac{v_{\varphi}}{2}, v_{\varphi}\right)$$

Technology

• Output is a CES aggregator over continuum of skill types s:

$$Y = \left[\int_0^\infty N(s)^{\frac{\theta-1}{\theta}} ds\right]^{\frac{\theta}{\theta-1}}, \quad \theta \in [1,\infty)$$

• N(s): effective hours of type s

Aggregate resource constraint:

$$Y = \sum_{a=0}^{A} \int_{i=0}^{1} c_{i,a} \, di + G$$

• WLOG:
$$G = gY$$

Individual Wages and Earnings

• Hourly wages:

$$\log w_{ia} = \log p(s_i) + x_a + \alpha_{ia} + \varepsilon_{ia}$$

• $p(s_i)$: skill price = marginal product of labor of type s

• x_a : deterministic age-productivity profile

•
$$\alpha_{ia} = \alpha_{i,a-1} + \omega_{ia}, \quad \omega_{ia} \sim \mathcal{N}\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)$$
 [uninsurable]

- $\bullet \ \varepsilon_{ia} \overset{iid}{\sim} \mathcal{N}\left(-\frac{v_{\varepsilon a}}{2}, v_{\varepsilon a}\right)$ [privately insurable]
- Gross earnings:

$$y_{ia} = \underbrace{p(s_i)}_{\text{skill investment}} \times \underbrace{\exp(x_a)}_{\text{life-cycle}} \times \underbrace{\exp(\alpha_{ia} + \varepsilon_{ia})}_{\text{shocks}} \times \underbrace{h_{ia}}_{\text{labor supply}}$$

Government

• Government budget constraint (no government debt):

$$gY = \sum_{a=0}^{A} \int_{0}^{1} \underbrace{\left[y_{i} - \lambda_{a} y_{i}^{1-\tau_{a}}\right]}_{T_{a}(y_{i})} di$$

• Government chooses vector $\{\lambda_a^*, \tau_a^*\}_{a=0}^A$ and g^*

Government

• Government budget constraint (no government debt):

$$gY = \sum_{a=0}^{A} \int_{0}^{1} \underbrace{\left[y_{i} - \lambda_{a} y_{i}^{1-\tau_{a}}\right]}_{T_{a}(y_{i})} di$$

- Government chooses vector $\{\lambda_a^*, \tau_a^*\}_{a=0}^A$ and g^*
 - Optimal public good provision: $g^* = \frac{\chi}{1+\chi}$
 - Samuelson condition: $MRS_{C,G} = MRT_{C,G} = 1$

EQUILIBRIUM ALLOCATIONS

Skill Prices and Skill Investment

• Skill price has the Mincerian form:

 $\log p(s) = \pi_0 + \pi_1 s(\kappa; \bar{\tau})$

- Closed form expressions for equilibrium π_0 and π_1
- Optimal skill investment is linear in κ :

$$s\left(\kappa; \overline{\tau}\right) = \left[\left(1 - \overline{\tau}\right)\pi_{1}\right]^{\psi} \cdot \kappa$$

where: $\bar{\tau} = \frac{1-\beta}{1-\beta^{A+1}} \sum_{a=0}^{A} \beta^a \tau_a$

• Distribution of p(s) is Pareto with parameter θ

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + \mathcal{C}_a$$

• Progressivity determines the pass-through of shocks/inequality

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + \mathcal{C}_a$$

• Progressivity determines the pass-through of shocks/inequality

$$\log h_a = \frac{\log(1-\tau_a)}{1+\sigma} - (\varphi + \bar{\varphi}_a) + \left(\frac{1-\tau_a}{\sigma + \tau_a}\right)\varepsilon - \mathcal{H}_a$$

• Log-utility \rightarrow hours unaffected by $\{\lambda_a, p(s), x_a, \alpha\}$

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + \mathcal{C}_a$$

• Progressivity determines the pass-through of shocks/inequality

$$\log h_a = \frac{\log(1-\tau_a)}{1+\sigma} - (\varphi + \bar{\varphi}_a) + \left(\frac{1-\tau_a}{\sigma + \tau_a}\right)\varepsilon - \mathcal{H}_a$$

- Log-utility \rightarrow hours unaffected by $\{\lambda_a, p(s), x_a, \alpha\}$
- Note: insurable productivity shocks enters *h* but not *c*

Social Welfare

Social Welfare Function

- Utilitarian: equal weight on welfare of all currently alive agents, discounts welfare of future cohorts at rate β
- $\beta = 1$: SWF equals steady-state welfare
- $\beta < 1$: SWF embeds transition as planner cares for past cohorts
 - Transition driven by irreversible skill choice of past cohorts
 - Allow $\{\lambda_{a,t}\}$, $\{\tau_{a,t}\}$, g_t to vary freely by age and time
 - Initial condition: steady-state under τ^{US}
- Feasible to optimize over large vector of policy parameters because social welfare has a closed-form

STEADY-STATE ANALYSIS

Social Welfare Function $(\beta = 1)$

$$\mathcal{W}^{ss}(\{\tau_a\}) = -\frac{1}{A} \sum_{a=0}^{A-1} \frac{1-\tau_a}{1+\sigma}$$

Disutility of labor

+
$$(1+\chi)\log\left[\sum_{a=0}^{A-1} (1-\tau_a)^{\frac{1}{1+\sigma}} \cdot \exp(x_a - \bar{\varphi}_a) + \left(\frac{\tau_a (1+\hat{\sigma}_a)}{\hat{\sigma}_a^2} + \frac{1}{\hat{\sigma}_a}\right) \frac{v_{\varepsilon a}}{2}\right]$$

Gain from labor supply: effective hours N

+
$$(1+\chi)\frac{1}{(1+\psi)(\theta-1)}\left[\psi\log(1-\bar{\tau}) + \log\left(\frac{1}{\eta\theta^{\psi}}\left(\frac{\theta}{\theta-1}\right)^{\theta(1+\psi)}\right)\right]$$

Gain from skill investment: productivity: $\log(E[p(s)])$

$$-\underbrace{\frac{\psi}{1+\psi}\frac{1-\bar{\tau}}{\theta}}_{1+\psi} + \frac{1}{A}\sum_{a=0}^{A-1}\left[\log\left(1-\left(\frac{1-\tau_a}{\theta}\right)\right) + \left(\frac{1-\tau_a}{\theta}\right)\right]$$

Avg. skill inv. cost

Cost of consumption dispersion across skills

$$- \frac{1}{A} \sum_{a=0}^{A-1} (1-\tau_a)^2 \left(\frac{v_{\varphi}}{2} + a\frac{v_{\omega}}{2}\right)$$

Cons. dispersion due to unins. risk and pref. heter.

Optimal Policy: Theoretical results for $\beta = 1$

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (b) $v_{\varepsilon a} = v_{\varepsilon}$: flat profile of insurable productivity dispersion
 - (c) $\{x_a \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility

Optimal Policy: Theoretical results for $\beta = 1$

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (b) $v_{\varepsilon a} = v_{\varepsilon}$: flat profile of insurable productivity dispersion
 - (c) $\{x_a \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility
- 2. If, in addition, $\theta = \infty$ and $v_{\varphi} = 0$, the economy \rightarrow RA and $\tau_a^* = -\chi$
 - Regressivity corrects the externality linked to valued G

Optimal Policy: Theoretical results for $\beta = 1$

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (b) $v_{\varepsilon a} = v_{\varepsilon}$: flat profile of insurable productivity dispersion
 - (c) $\{x_a \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility
- 2. If, in addition, $\theta = \infty$ and $v_{\varphi} = 0$, the economy \rightarrow RA and $\tau_a^* = -\chi$
 - Regressivity corrects the externality linked to valued G
- 3. Given any profile for $\{\tau_a\}$, the optimal profile for $\{\lambda_a^*\}$ equates average consumption (i.e., the MUC_a) by age

Determinants of age profile of progressivity $(\beta = 1)$

- (a) Uninsurable Risk channel Permanent uninsurable risk $(v_{\omega} > 0)$ implies that $\{\tau_a^*\}$ is increasing in age
- (b) Insurable Risk channel Starting from $\tau_a > 0$, rising insurable risk $(v_{\varepsilon,a+1} > v_{\varepsilon,a})$ implies that $\tau_{a+1}^* < \tau_a^*$
- (c) Life-Cycle channel Age profile in $\{x_a - \overline{\varphi}_a\}$ implies $\{\tau_a^*\}$ which is its mirror image
 - The optimal $\{\tau_a^*\}$ equates the labor wedge, $1 MTR_a$, by age

$$1 - MTR_a = \lambda_a (1 - \tau_a) y_a^{-\tau_a} = 1$$

• It implements the first best

PARAMETERIZATION

Parameterization

- Parameters: $\{\tau^{US}, \chi, \sigma, \psi, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon 0}, v_{\eta}\}$ and $\{x_a, \bar{\varphi}_a\}_{a=1}^A$
- US progressivity estimated on micro data $ightarrow au^{US} = 0.181$
- Assume observed $G/Y = 0.19 = g^* \rightarrow \chi = 0.233$
- Frisch elasticity (micro-evidence ~ 0.5) $\rightarrow \sigma = 2$
- Price-elasticity of skill investment $ightarrow \psi = 0.65$

 $\begin{array}{rcl} var_0(\log c) & \rightarrow & \theta = 3.12 \\ var(\log h) & \rightarrow & v_{\varphi} = 0.035 \\ cov(\log w, \log c) & \rightarrow & v_{\omega} = 0.0058 \\ cov(\log w, \log h) & \rightarrow & v_{\varepsilon,0} = 0.09, \Delta v_{\varepsilon,a} = 0.0044 \end{array}$

• $\{x_a, \bar{\varphi}_a\}_{a=1}^A$ estimated to match age profiles wages of and hours

Age Profile for Efficiency and Disutility of Work

• Important: $\{x_a - \overline{\varphi}_a\}$ is hump-shaped

Life-cycle Means and Variances

QUANTITATIVE RESULTS $\beta = 1$

Representative Agent

• Optimality: $\tau_a^* = -\chi$

Add Heterogeneity in Disutility of Work (φ)

• τ_a^* still flat but shifted up (redistribution) \Rightarrow lower labor supply

Add Heterogeneity in Ability (θ finite)

• τ_a^* still flat but shifted further up (redistribution > distortion)

Add Uninsurable Risk ($v_{\omega} > 0$)

• Profile for τ_a^* steeper: more redistribution needed later in life since uninsurable risk cumulates

Add Insurable Risk ($v_{\varepsilon} > 0$)

• Profile for τ_a^* is flattened but still upward sloping

Add Life Cycle $\{x_a, \bar{\varphi}_a\}$

- $x_a \bar{\varphi}_a$ hump-shaped \Rightarrow earnings are hump-shaped
- λ_a is U-shaped to equalize consumption across ages
- Smoothing $1 MTR_a = \lambda_a (1 \tau_a) y_a^{-\tau_a} \Rightarrow \tau_a$ is U-shaped as well

All Channels: Marginal Tax Rates by Age

Age Varying Preferences for Consumption

• Use standard equivalence scale for household size to set desired consumption by age \Rightarrow age path for $u(c_a)$ shifter

Age Varying Preferences for Consumption

• Use standard equivalence scale for household size to set desired consumption by age \Rightarrow age path for $u(c_a)$ shifter

• Some consumption inequality over the life cycle is efficient \Rightarrow less redistribution through λ_a and flatter profile for τ_a

Age Varying Frisch Elasticity

- Frisch at age 60 three times larger than at age 45 (Blundell et al.)
- It pushes optimal progressivity down at older ages

Transitional Dynamics $\beta < 1$

Optimal Policy with Transition

- 1. The optimal value for spending is $g_t = \frac{\chi}{1+\chi}$
- 2. Given any values for $\{\tau_{a,t}\}$, the optimal profiles $\{\lambda_{a,t}^*\}$ equate average consumption by age at each date t

Optimal Policy with Transition

- 1. The optimal value for spending is $g_t = \frac{\chi}{1+\chi}$
- 2. Given any values for $\{\tau_{a,t}\}$, the optimal profiles $\{\lambda_{a,t}^*\}$ equate average consumption by age at each date t
- 3. If (i) skill is the only source of heterogeneity and (ii) labor supply is inelastic, then optimal reform at t = 0 features:
 - (a) $\tau_{a,t}^* = 1$ for all a > t (max expropriation from existing cohorts)
 - (b) $\tau_{0+j,t+j}^* = \tau_{0,t}^* < 1$ for all j = 1, ..., A 1 and for all $t \ge 0$ (flat τ_a profiles for the new cohorts)

Reminiscent of capital taxation, but progressivity varies by cohort, not time since human capital is non-tradable

Transition: Skill Heterogeneity + Elastic Labor

- 1. τ_a higher for existing cohorts: no skill investment distortion
- 2. τ_a rises with age: output grows, planner can redistribute more

Optimal Policy with Transition: Baseline

Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

	Benchmark	U.S. BL	Natural BL
(λ^*, τ^*) constant	0.10		
λ^* age-varying, $ au^*$ constant	1.69		
λ^* constant, $ au^*$ age-varying	2.10		
(λ^*, τ^*) age-varying	2.42		

INTERTEMPORAL TRADE

Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit
 - No insurable productivity risk
 - ► Tax levied on *y* net of savings:

$$c_a = \lambda_a (wh + Rb - b')^{1 - \tau_a}$$

Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit
 - No insurable productivity risk
 - ► Tax levied on *y* net of savings:

$$c_a = \lambda_a (wh + Rb - b')^{1 - \tau_a}$$

- Numerical solution:
 - Skill investment decision rules still in closed form
 - Solve numerically for hours worked, savings, interest rate
 - Search for optimal $\{\tau_a\}$ as 2nd order polynomial of age

Estimation of Consumer Credit Limit

- SCF 2013 data, households 25-60. We sum four components:
 - (a) Limit on credit cards
 - (b) Limit on HELOCs
 - (c) $2 \times \text{installment loans for durables}$
 - (d) $2 \times$ other debt (e.g., short-term loans from IRA)

Estimation of Consumer Credit Limit

- SCF 2013 data, households 25-60. We sum four components:
 - (a) Limit on credit cards
 - (b) Limit on HELOCs
 - (c) $2 \times installment$ loans for durables
 - (d) $2 \times$ other debt (e.g., short-term loans from IRA)

Estimation of Consumer Credit Limit

- SCF 2013 data, households 25-60. We sum four components:
 - (a) Limit on credit cards
 - (b) Limit on HELOCs
 - (c) $2 \times \text{installment loans for durables}$
 - (d) $2 \times$ other debt (e.g., short-term loans from IRA)
- We set it to 1.5 × annual income (90th percentile)
- Zero BL (tightest) \Rightarrow autarky
- Natural BL (loosest): max 30 times annual income

Optimal Progressivity with Borrowing/Saving: $\beta R = 1$

- Zero BL: $\{\tau_a^*\}$ almost identical to benchmark model
- Natural BL: $\{\tau_a^*\}$ close to a model with flat profile for $\{x_a \bar{\varphi}_a\}$
- U.S. BL: $\{\tau_a^*\}$ very similar to autarky/benchmark case

Optimal Progressivity with Borrowing/Saving: R^*

- Interest rate channel: $\{\tau_a^*\}$ more downward sloping
 - $\beta R^* > 1$, but planner wants to equate C_a across ages
 - \blacktriangleright λ_a decreasing so that after tax interest rate is 1 (EE wedge)
 - τ_a also decreasing to equate labor wedge

Extension with Retirement and Pensions

• Disposable income in retirement: $\lambda_a \left[p(s_i) \exp(\alpha_{i,A} - \varphi_i) \right]^{1-\tau_a}$

Extension with Retirement and Pensions

• Disposable income in retirement: $\lambda_a \left[p(s_i) \exp(\alpha_{i,A} - \varphi_i) \right]^{1-\tau_a}$

- Jump in τ_a : no labor supply distortion in retirement
- Flat profile in retirement: no motive for age dependence
- No full compression: it would distort too much dynamic skill choice
- Lower τ_a during working life: skill choice depends on $\bar{\tau}$

Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

	Benchmark	U.S. BL	Natural BL
(λ^*, au^*) constant	0.10	0.16	0.18
λ^* age-varying, $ au^*$ constant	1.69	1.07	0.67
λ^* constant, $ au^*$ age-varying	2.10	1.63	1.36
(λ^*, τ^*) age-varying	2.42	1.76	1.38

Lessons

- Distinct roles for λ_a and τ_a :
 - Tax level λ_a delivers redistribution across age groups
 - Progressivity τ_a is key for skill investment and labor supply distortions, and for redistribution / insurance within age groups
- Forces shaping how progressivity varies with age roughly offset:
 - Uninsurable risk + sunk skill investment $\Rightarrow \tau_a$ rises with age
 - Rising labor productivity and insurable risk $\Rightarrow \tau_a$ falls with age
- U-shape profile for progressivity is optimal, but dampened if:
 - borrowing limits are very loose
 - preferences for consumption display a strong hump

THANKS!