Optimal Progressivity with Age-Dependent Taxation

Jonathan Heathcote
Federal Reserve Bank of Minneapolis

Kjetil Storesletten
University of Oslo

Gianluca Violante
Princeton University

Harvard University
How progressive should labor income taxation be?

• Arguments against progressivity: distortions
 ▶ Labor supply choice
 ▶ Human capital investment
How progressive should labor income taxation be?

• Arguments against progressivity: distortions
 ▶ Labor supply choice
 ▶ Human capital investment

• Arguments in favor of progressivity: missing markets
 ▶ Unequal initial conditions
 ▶ Labor market shocks
 ▶ Increasing age-productivity profile

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
How progressive should labor income taxation be?

• Arguments against progressivity: distortions
 ▶ Labor supply choice
 ▶ Human capital investment

• Arguments in favor of progressivity: missing markets
 ▶ Unequal initial conditions
 ▶ Labor market shocks
 ▶ Increasing age-productivity profile

• Q: Tagging → should optimal progressivity vary with age?
This paper

- OLG equilibrium model with:
 - flexible labor supply [static choice]
 - skill investment [dynamic choice]
 - differential disutility of work & learning ability [ex-ante heter.]
 - partial insurance against wage risk [ex-post uncertainty]
 - age profile for productivity and disutility of work [life cycle]
This paper

- **OLG equilibrium model** with:
 - flexible labor supply [static choice]
 - skill investment [dynamic choice]
 - differential disutility of work & learning ability [ex-ante heter.]
 - partial insurance against wage risk [ex-post uncertainty]
 - age profile for productivity and disutility of work [life cycle]

- **Baseline**: analytical model to isolate forces at work

- **Extension**: numerically solved model with borrowing and saving
TAX FUNCTION
Tax Function

\[T(y) = y - \lambda y^{1-\tau} \]
Tax Function

\[\log(y - T(y)) = \log \lambda + (1 - \tau) \log y \]
Tax Function

$$\log(y - T(y)) = \log \lambda + (1 - \tau) \log y$$

- It preserves analytical tractability
- It closely approximates U.S. tax/transfer system ($\tau^{US} = 0.181$)
We generalize tax/transfer system to allow for age variation:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]
Generalized Tax Function

- We generalize tax/transfer system to allow for age variation:
 \[T_a(y) = y - \lambda_a y^{1 - \tau_a} \]

- Does the US tax/transfer system display age dependence?
Generalized Tax Function

• We generalize tax/transfer system to allow for age variation:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]

• Does the US tax/transfer system display age dependence?

• Estimate \(\{\tau_a\} \) by household age

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Related Literature

- **Efficiency profile**: Weinzierl (2009), Gorry and Oberfield (2012)

- **Uninsurable risk**: Farhi and Werning (2013), Golosov, Troshkin, and Tsyvinski (2016)

HSV: Transparency + GE + Transition + Quantitative
ENVIRONMENT
Preferences

- Preferences over consumption \((c)\), hours \((h)\), publicly-provided goods \((G)\), and skill-investment \((s)\) effort:

\[
U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^{A} \beta^a u_i(c_{ia}, h_{ia}, G)
\]
Preferences

• Preferences over consumption \((c)\), hours \((h)\), publicly-provided goods \((G)\), and skill-investment \((s)\) effort:

\[
U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^{A} \beta^a u_i(c_{ia}, h_{ia}, G)
\]

\[
v_i(s_i) = \frac{1}{(\kappa_i)^{1/\psi}} \cdot \frac{s_i^{1+1/\psi}}{1 + 1/\psi}
\]

\[
\kappa_i \sim \text{Exp}(1)
\]
Preferences

- Preferences over consumption \((c) \), hours \((h) \), publicly-provided goods \((G) \), and skill-investment \((s) \) effort:

\[
U_i = -v_i(s_i) + E_0 \sum_{a=0}^A \beta^a u_i(c_{ia}, h_{ia}, G)
\]

\[
v_i(s_i) = \frac{1}{(\kappa_i)^{1/\psi}} \cdot \frac{s_i^{1+1/\psi}}{1 + 1/\psi}
\]

\[
\kappa_i \sim \text{Exp}(1)
\]

\[
u_i (c_{ia}, h_{ia}, G) = \log c_{ia} - \frac{\exp \left[(1 + \sigma) (\varphi_{ia} + \bar{\varphi}_a) \right]}{1 + \sigma} (h_{ia})^{1+\sigma} + \chi \log G
\]

\[
\varphi_i \sim \mathcal{N} \left(\frac{v_{\varphi}}{2}, v_{\varphi} \right)
\]
Technology

- **Output** is a CES aggregator over continuum of skill types s:

 $$Y = \left[\int_0^\infty N(s) \frac{\theta - 1}{\theta} ds \right]^{\frac{\theta}{\theta - 1}}, \quad \theta \in [1, \infty)$$

 - $N(s)$: effective hours of type s

- **Aggregate resource constraint**:

 $$Y = \sum_{a=0}^A \int_{i=0}^1 c_{i,a} \, di + G$$

 - WLOG: $G = gY$

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Individual Wages and Earnings

• Hourly wages:

\[
\log w_{ia} = \log p(s_i) + x_a + \alpha_{ia} + \varepsilon_{ia}
\]

▷ \(p(s_i)\): skill price = marginal product of labor of type \(s\)

▷ \(x_a\): deterministic age-productivity profile

▷ \(\alpha_{ia} = \alpha_{i,a-1} + \omega_{ia}, \quad \omega_{ia} \sim \mathcal{N}\left(-\frac{v_{\omega}}{2}, v_{\omega}\right)\) [uninsurable]

▷ \(\varepsilon_{ia} \sim iid \mathcal{N}\left(-\frac{v_{\varepsilon_a}}{2}, v_{\varepsilon_a}\right)\) [privately insurable]

• Gross earnings:

\[
y_{ia} = p(s_i) \times \exp(x_a) \times \exp(\alpha_{ia} + \varepsilon_{ia}) \times h_{ia}
\]

skill investment \quad life-cycle \quad shocks \quad labor supply
Government

- Government budget constraint (no government debt):

\[gY = \sum_{a=0}^{A} \int_{0}^{1} \left[y_i - \lambda_a y_i^{1-\tau_a} \right] \frac{dY_i}{T_a(y_i)} \]

- Government chooses vector \(\{ \lambda^*_a, \tau^*_a \} \) and \(g^* \)
Government

- Government budget constraint (no government debt):

\[gY = \sum_{a=0}^{A} \int_{0}^{1} \left[y_i - \lambda_a y_i^{1-\tau_a} \right] di \]

- Government chooses vector \(\{ \lambda_a^*, \tau_a^* \} \) and \(g^* \)

 - Optimal public good provision: \(g^* = \frac{x}{1+\chi} \)

 - Samuelson condition: \(MRS_{C,G} = MRT_{C,G} = 1 \)
EQUILIBRIUM ALLOCATIONS
Skill Prices and Skill Investment

• Skill price has the **Mincerian form**:

\[\log p(s) = \pi_0 + \pi_1 s(\kappa; \bar{\tau}) \]

• Closed form expressions for equilibrium \(\pi_0 \) and \(\pi_1 \)

• Optimal **skill investment** is linear in \(\kappa \):

\[s(\kappa; \bar{\tau}) = \left[(1 - \bar{\tau}) \pi_1 \right]^\psi \cdot \kappa \]

where:
\[\bar{\tau} = \frac{1 - \beta}{1 - \beta^{A+1}} \sum_{a=0}^{A} \beta^a \tau_a \]

• Distribution of \(p(s) \) is **Pareto** with parameter \(\theta \)

Heathcote-Storesetten-Violante, "Age-Dependent Taxation"
Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + C_a$$

- Progressivity determines the pass-through of shocks/inequality
Consumption and Hours

\[
\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + C_a
\]

• Progressivity determines the pass-through of shocks/inequality

\[
\log h_a = \frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \left(\frac{1 - \tau_a}{\sigma + \tau_a} \right) \varepsilon - \mathcal{H}_a
\]

• Log-utility → hours unaffected by \{\lambda_a, p(s), x_a, \alpha\}
Consumption and Hours

\[
\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right] + C_a
\]

- Progressivity determines the pass-through of shocks/inequality

\[
\log h_a = \frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \left(\frac{1 - \tau_a}{\sigma + \tau_a} \right) \varepsilon - H_a
\]

- Log-utility → hours unaffected by \{\lambda_a, p(s), x_a, \alpha\}

- **Note**: insurable productivity shocks enters \(h\) but not \(c\)
SOCIAL WELFARE
Social Welfare Function

- **Utilitarian**: equal weight on welfare of all currently alive agents, discounts welfare of future cohorts at rate β

- $\beta = 1$: SWF equals steady-state welfare

- $\beta < 1$: SWF embeds transition as planner cares for past cohorts
 - Transition driven by irreversible skill choice of past cohorts
 - Allow $\{\lambda_{a,t}\}$, $\{\tau_{a,t}\}$, g_t to vary freely by age and time
 - Initial condition: steady-state under τ^{US}

- Feasible to optimize over large vector of policy parameters because social welfare has a closed-form
STEADY-STATE ANALYSIS
Social Welfare Function ($\beta = 1$)

$$W^{ss}(\{\tau_a\}) = -\frac{1}{A} \sum_{a=0}^{A-1} \frac{1 - \tau_a}{1 + \sigma}$$

Disutility of labor

$$+ \ (1 + \chi) \log \left[\sum_{a=0}^{A-1} (1 - \tau_a)^{\frac{1}{1+\sigma}} \cdot \exp(x_a - \tilde{\varphi}_a) + \left(\frac{\tau_a (1 + \tilde{\sigma}_a)}{\tilde{\sigma}_a^2} + \frac{1}{\tilde{\sigma}_a} \right) \frac{v_{\varepsilon a}}{2} \right]$$

Gain from labor supply: effective hours N

$$+ \ (1 + \chi) \frac{1}{(1 + \psi)(\theta - 1)} \left[\psi \log (1 - \bar{\tau}) + \log \left(\frac{1}{\eta \theta^\psi} \left(\frac{\theta}{\theta - 1} \right)^{\theta(1+\psi)} \right) \right]$$

Gain from skill investment: productivity: $\log(E[p(s)])$

$$- \ \frac{\psi}{1 + \psi} \frac{1 - \bar{\tau}}{\theta} + \frac{1}{A} \sum_{a=0}^{A-1} \left[\log \left(1 - \left(\frac{1 - \tau_a}{\theta} \right) \right) + \left(\frac{1 - \tau_a}{\theta} \right) \right]$$

Avg. skill inv. cost

$$- \ \frac{1}{A} \sum_{a=0}^{A-1} (1 - \tau_a)^2 \left(\frac{v_{\varphi}}{2} + a \frac{v_{\omega}}{2} \right)$$

Cons. dispersion due to unins. risk and pref. heter.

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
1. Optimal $\{\tau^*_a, \lambda^*_a\}$ are age-invariant if:

(a) $v_\omega = 0$: flat profile of uninsurable productivity dispersion

(b) $v_{\varepsilon a} = v_\varepsilon$: flat profile of insurable productivity dispersion

(c) $\{x_a - \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility
Optimal Policy: Theoretical results for $\beta = 1$

1. Optimal $\{\tau^*_a, \lambda^*_a\}$ are age-invariant if:

 (a) $v_\omega = 0$: flat profile of uninsurable productivity dispersion
 (b) $v_{\varepsilon a} = v_\varepsilon$: flat profile of insurable productivity dispersion
 (c) $\{x_a - \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility

2. If, in addition, $\theta = \infty$ and $v_\varphi = 0$, the economy \rightarrow RA and $\tau^*_a = -\chi$

 • Regressivity corrects the externality linked to valued G
Optimal Policy: Theoretical results for $\beta = 1$

1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:

 (a) $v_\omega = 0$: flat profile of uninsurable productivity dispersion

 (b) $v_{\epsilon a} = v_{\epsilon}$: flat profile of insurable productivity dispersion

 (c) $\{x_a - \bar{\varphi}_a\}$ constant: flat profile of efficiency net of disutility

2. If, in addition, $\theta = \infty$ and $v_\varphi = 0$, the economy \rightarrow RA and $\tau_a^* = -\chi$

 • Regressivity corrects the externality linked to valued G

3. Given any profile for $\{\tau_a\}$, the optimal profile for $\{\lambda_a^*\}$ equates average consumption (i.e., the MUC_a) by age
Determinants of age profile of progressivity ($\beta = 1$)

(a) **Uninsurable Risk channel**

Permanent uninsurable risk ($v_{\omega} > 0$) implies that $\{\tau_a^*\}$ is increasing in age

(b) **Insurable Risk channel**

Starting from $\tau_a > 0$, rising insurable risk ($v_{\varepsilon,a+1} > v_{\varepsilon,a}$) implies that $\tau_{a+1}^* < \tau_a^*$

(c) **Life-Cycle channel**

Age profile in $\{x_a - \bar{\phi}_a\}$ implies $\{\tau_a^*\}$ which is its mirror image

- The optimal $\{\tau_a^*\}$ equates the labor wedge, $1 - MTR_a$, by age

$$1 - MTR_a = \lambda_a (1 - \tau_a) y^{\bar{a}}_{-\tau_a} = 1$$

- It implements the first best

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
PARAMETERIZATION
Parameterization

- Parameters: \(\{\tau^{US}, \chi, \sigma, \psi, \theta, v_\varphi, v_\omega, v_{\varepsilon 0}, v_\eta\} \) and \(\{x_a, \varphi_a\}_{a=1}^A \)

- US progressivity estimated on micro data \(\rightarrow \tau^{US} = 0.181 \)

- Assume observed \(G/Y = 0.19 = g^* \) \(\rightarrow \chi = 0.233 \)

- Frisch elasticity (micro-evidence \(\sim 0.5 \)) \(\rightarrow \sigma = 2 \)

- Price-elasticity of skill investment \(\rightarrow \psi = 0.65 \)

\[
\begin{align*}
var_0(\log c) & \rightarrow \theta = 3.12 \\
var(\log h) & \rightarrow v_\varphi = 0.035 \\
cov(\log w, \log c) & \rightarrow v_\omega = 0.0058 \\
cov(\log w, \log h) & \rightarrow v_{\varepsilon,0} = 0.09, \Delta v_{\varepsilon,a} = 0.0044
\end{align*}
\]

- \(\{x_a, \varphi_a\}_{a=1}^A \) estimated to match age profiles wages of and hours

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Age Profile for Efficiency and Disutility of Work

- Important: \(x_a - \bar{\varphi}_a \) is hump-shaped
Life-cycle Means and Variances

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Quantitative Results

\[\beta = 1 \]
Representative Agent

- Optimality: $\tau_a^* = -\chi$

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Add Heterogeneity in Disutility of Work (φ)

- τ^*_a still flat but shifted up (redistribution) \Rightarrow lower labor supply

Heathcote-Storesetten-Violante, "Age-Dependent Taxation"
Add Heterogeneity in Ability (θ finite)

- τ^*_a still flat but shifted further up (redistribution > distortion)

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Add Uninsurable Risk \((\nu_\omega > 0) \)

- Profile for \(\tau^*_a \) steeper: more redistribution needed later in life since uninsurable risk cumulates
Add Insurable Risk ($\nu_\varepsilon > 0$)

- Profile for τ^*_a is flattened but still upward sloping
Add Life Cycle \(\{x_a, \bar{\varphi}_a\} \)

- \(x_a - \bar{\varphi}_a \) hump-shaped \(\Rightarrow \) earnings are hump-shaped
- \(\lambda_a \) is U-shaped to equalize consumption across ages
- Smoothing \(1 - MTR_a = \lambda_a (1 - \tau_a) y_a^{1-\tau_a} \Rightarrow \tau_a \) is U-shaped as well
All Channels: Marginal Tax Rates by Age

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Age Varying Preferences for Consumption

- Use standard equivalence scale for household size to set desired consumption by age ⇒ age path for $u(c_a)$ shifter
Age Varying Preferences for Consumption

- Use standard equivalence scale for household size to set desired consumption by age → age path for $u(c_a)$ shifter

- Some consumption inequality over the life cycle is efficient → less redistribution through λ_a and flatter profile for τ_a
• Frisch at age 60 three times larger than at age 45 (Blundell et al.)

• It pushes optimal progressivity down at older ages
TRANSITIONAL DYNAMICS

\[\beta < 1 \]
Optimal Policy with Transition

1. The optimal value for spending is $g_t = \frac{x}{1+\chi}$

2. Given any values for $\{\tau_{a,t}\}$, the optimal profiles $\{\lambda^*_{a,t}\}$ equate average consumption by age at each date t
Optimal Policy with Transition

1. The optimal value for spending is \(g_t = \frac{X}{1+\chi} \).

2. Given any values for \(\{\tau_{a,t}\} \), the optimal profiles \(\{\lambda_{a,t}^*\} \) equate average consumption by age at each date \(t \).

3. If (i) skill is the only source of heterogeneity and (ii) labor supply is inelastic, then optimal reform at \(t = 0 \) features:

 (a) \(\tau_{a,t}^* = 1 \) for all \(a > t \) (max expropriation from existing cohorts)

 (b) \(\tau_{0+j,t+j}^* = \tau_{0,t}^* < 1 \) for all \(j = 1, \ldots, A-1 \) and for all \(t \geq 0 \) (flat \(\tau_a \) profiles for the new cohorts)

Reminiscent of capital taxation, but progressivity varies by cohort, not time since human capital is non-tradable.
1. τ_a higher for existing cohorts: no skill investment distortion

2. τ_a rises with age: output grows, planner can redistribute more
Optimal Policy with Transition: Baseline

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>U.S. BL</th>
<th>Natural BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\lambda^, \tau^)$ constant</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>$\lambda^$ age-varying, $\tau^$ constant</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>$\lambda^$ constant, $\tau^$ age-varying</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>$(\lambda^, \tau^)$ age-varying</td>
<td>2.42</td>
<td></td>
</tr>
</tbody>
</table>
Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit
 - No insurable productivity risk
 - Tax levied on y net of savings:

$$c_a = \lambda_a (wh + Rb - b')^{1-\tau_a}$$
Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit
 - No insurable productivity risk
 - Tax levied on y net of savings:
 \[c_a = \lambda_a (wh + Rb - b')^{1-\tau_a} \]

- Numerical solution:
 - Skill investment decision rules still in closed form
 - Solve numerically for hours worked, savings, interest rate
 - Search for optimal $\{\tau_a\}$ as 2nd order polynomial of age
Estimation of Consumer Credit Limit

- **SCF 2013** data, households 25-60. We sum four components:

 (a) Limit on credit cards

 (b) Limit on HELOCs

 (c) \(2 \times\) installment loans for durables

 (d) \(2 \times\) other debt (e.g., short-term loans from IRA)
Estimation of Consumer Credit Limit

- **SCF 2013** data, households 25-60. We sum four components:

 (a) Limit on credit cards
 (b) Limit on HELOCs
 (c) $2 \times$ installment loans for durables
 (d) $2 \times$ other debt (e.g., short-term loans from IRA)

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Estimation of Consumer Credit Limit

- **SCF 2013** data, households 25-60. We sum four components:

 (a) Limit on credit cards

 (b) Limit on HELOCs

 (c) $2 \times$ installment loans for durables

 (d) $2 \times$ other debt (e.g., short-term loans from IRA)

- **We set it to $1.5 \times$ annual income** (90th percentile)

- **Zero BL** (tightest) \Rightarrow autarky

- **Natural BL** (loosest): max 30 times annual income
Optimal Progressivity with Borrowing/Saving: $\beta R = 1$

- **Zero BL**: $\{\tau^*_a\}$ almost identical to benchmark model
- **Natural BL**: $\{\tau^*_a\}$ close to a model with flat profile for $\{x_a - \bar{\varphi}_a\}$
- **U.S. BL**: $\{\tau^*_a\}$ very similar to autarkity/benchmark case

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
• **Interest rate channel**: $\{\tau_a^*\}$ more downward sloping

 - $\beta R^* > 1$, but planner wants to equate C_a across ages
 - λ_a decreasing so that after tax interest rate is 1 (EE wedge)
 - τ_a also decreasing to equate labor wedge
Extension with Retirement and Pensions

- Disposable income in retirement: $\lambda_a [p(s_i) \exp(\alpha_{i,A} - \varphi_i)]^{1-\tau_a}$
Extension with Retirement and Pensions

• Disposable income in retirement: $\lambda_a \left[p(s_i) \exp(\alpha_i, A - \phi_i)\right]^{1-\tau_a}$

• Jump in τ_a: no labor supply distortion in retirement

• Flat profile in retirement: no motive for age dependence

• No full compression: it would distort too much dynamic skill choice

• Lower τ_a during working life: skill choice depends on $\bar{\tau}$
Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>U.S. BL</th>
<th>Natural BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\lambda^, \tau^)) constant</td>
<td>0.10</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>(\lambda^) age-varying, (\tau^) constant</td>
<td>1.69</td>
<td>1.07</td>
<td>0.67</td>
</tr>
<tr>
<td>(\lambda^) constant, (\tau^) age-varying</td>
<td>2.10</td>
<td>1.63</td>
<td>1.36</td>
</tr>
<tr>
<td>((\lambda^, \tau^)) age-varying</td>
<td>2.42</td>
<td>1.76</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
Lessons

• **Distinct roles** for λ_a and τ_a:
 - Tax level λ_a delivers redistribution across age groups
 - Progressivity τ_a is key for skill investment and labor supply distortions, and for redistribution / insurance within age groups

• **Forces** shaping how progressivity varies with age **roughly offset**:
 - Uninsurable risk + sunk skill investment $\Rightarrow \tau_a$ rises with age
 - Rising labor productivity and insurable risk $\Rightarrow \tau_a$ falls with age

• **U-shape profile** for progressivity is optimal, but dampened if:
 - borrowing limits are very loose
 - preferences for consumption display a strong hump

Heathcote-Storesletten-Violante, "Age-Dependent Taxation"
THANKS!