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Basic Approaches in Literature

• Ramsey
• Parametric functional form for taxes (e.g. affine)
• Solving for optimum schedule just means solving for a few

parameter values
• Mirrlees

• Solve for optimal non-parametric schedule
• No ad hoc restrictions⇒ should be able to deliver higher

welfare
• Might be harder to compute

• Shape of optimal schedule still hotly debated, e.g.:
• Should transfers be targeted to the poorest, and rapidly

phased out as income rises? (means-tested transfers)
• Or should transfers be more universal? (UBI)



Mirrlees Taxation

• Static problem:
• Agents differ by productivity θ
• I values for productivity θ1, ..., θI

• Fraction πi of each type
• Preferences

Ui = u(ci)− v
(

yi

θi

)

log(ci)−

(
yi
θi

)1+σ

1 + σ

• Planner must raise revenue to finance G
• Planner puts weight Wi on type i s.t.

∑
i Wiπi = 1



Mirrlees Taxation
• An allocation is a vector {(ci, yi)}I

i=1

• Social welfare is given by∑
i

Wiπi

{
u(ci)− v

(
yi

θi

)}
• Planner can observe y, but not θ
• So taxes must be a function of y
• Planner’s problem is to choose a tax function T(y) such

that when agents take this schedule as given and solve

max
{ci,yi}

{
u(ci)− v

(
yi

θi

)}
s.t. ci = yi − T(yi)

• the resulting allocations maximize social welfare.



Mirrlees Clever Idea

• Optimal T could be a very complicated non-parametric
function
• Instead of thinking of planner picking T think of planner

picking allocations directly.
• Planner offers a menu of different choices {(ci, yi)} with

one pair in this menu intended for each type
• Planner says: “If you produce income yi (which I can

observe) then you must pay a tax yi − ci.”
• But planner cannot force agents to choose the pair

intended for their type, because type is not observed
• Thus planner must incentivize each type to pick their

intended allocation



Mirrlees Problem
• Thus the Mirrlees problem is

max
{ci,yi}

∑
i

Wiπi

{
u(ci)− v

(
yi

θi

)}
s.t.

u(ci)− v
(

yi

θi

)
≥ u(cj)− v

(
yj

θi

)
for all i, j∑

i

πici + G =
∑

i

πiyi

• There are lots of incentive constraints!
• Fortunately most of them will not be binding
• Planner wants to redistribute downwards⇒ only

downward IC constraints will bind
• In fact, only local downward constraints will bind.



Simplified Problem

max
{ci,yi}

∑
i

Wiπi

{
u(ci)− v

(
yi

θi

)}
πiµi : u(ci)− v

(
yi

θi

)
≥ u(ci−1)− v

(
yi−1

θi

)
for i = 2, ..., I

λ :
∑

i

πici + G ≤
∑

i

πiyi

• FOCs (recall no IC constraint for i = 1⇒ µ1 = 0)

ci : Wiπiu′(ci) + πiµiu′(ci)− λπi + πi+1µi+1u′(ci) = 0 for i = 1, ..., I − 1

yi : −Wiπiv′
(

yi

θi

)
1
θi
− πiµiv′

(
yi

θi

)
1
θi

+ λπi + πi+1µi+1v′
(

yi

θi+1

)
1
θi+1

= 0 for i = 1, ..., I − 1

ci : Wiπiu′(ci) + πiµiu′(ci)− λπi = 0 for i = I

yi : −Wiπiv′
(

yi

θi

)
1
θi
− πiµiv′

(
yi

θi

)
1
θi

+ λπi = 0 for i = I

• 2I + I − 1 + 1 unknowns: {ci, yi}I
i=1 , {µi}I

i=2 , λ

• 2I FOCs + I constraints: I− 1 IC constraints and the resource constraint



Decentralization
• Problem will have a solution. How can we decentralize it?
• FOC and budget constraints for households

u′(ci)θi(1− T ′(yi)) = v′
(

yi

θi

)

ci = yi − T(yi)

• Note that marginal and average tax rates are only exactly
pinned down at grid points.
• Note that for i = I the i + 1 terms are absent, so can

combine the two FOCs to give

(WIπI + πIµI) θIu′(cI) = (WIπI + πIµI) v′
(

yI

θI

)
• ⇒ T ′(yI) = 0
• A classic result in the literature



Numerical Solution

1. Guess λ
2. Guess c1

3. Solve for µ2 from FOC for c1

4. Solve for y1 from FOC for y1

5. 3 equations (2 FOCs and IC2) to solve for c2, y2 and µ3

6. Iterate upwards through the grid
7. At I − 1 we solve for µI

8. Then we have 2 FOCs at I to solve for cI and yI

9. Check ICI and adjust c1 if not satisfied
10. Finally check resource constraint and adjust λ



Practical Optimal Income Taxation (2021)

• In this paper we show that a very fine grid on productivity is
required to deliver practical policy advice⇒ Policy
prescriptions based on analyses with a coarse grid are of
little practical value

• If using a fine grid is not feasible, a parametric
Ramsey-style approach to optimal policy is preferable to
the Mirrleesian approach



Calibration

• Preferences: σ = 2

• G is equal to 18.8 percent of model GDP

• Wage distribution estimated using the SCF (will return to
this)

• Discretization: N grid points, evenly spaced in logs such
that {log (θ1) , · · · , log (θN)} , with prob {π1, · · · , πN}

• Coarseness of the grid: κ =
θi+1
θi

=
(
θN
θ1

) 1
N−1



Optimal Tax Policy and Grid Points

(a) Marginal Tax Rates
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(b) Average Tax Rates
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• With N ≥ 1, 000, tax schedules indistinguishable
⇒ Accurate representation of optimal taxation in an
economy with continuous productivity distribution



Optimal Tax Policy and Grid Points

(a) Marginal Tax Rates
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(b) Average Tax Rates

1.25 2.5 5 10 20 40 80 160 320 640 1280 2560 5120

-60

-40

-20

0

20

40

60

80

• With N = 10, MTRs lower, but ATR rises faster?

• Need to fill in taxes in between grid points



True Optimal Tax Policy when N = 10

(a) Income vs Consumption (b) Marginal Tax Rates
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Linearly interpolating between grid points would be wrong!



Welfare Gains

Welfare Gains (%,CEV)

(1) (2) (3)
# of grid points N Status Quo First Best Mirrlees

10, 000 — 44.72 2.07
1, 000 0.00 44.73 2.28

100 −0.01 44.81 4.40
50 −0.01 44.89 6.66
10 −0.21 46.07 20.13



Computing Optimal Taxes: Tax Formula Approach
• Take FOCs from Mirrlees problem and rearrange to get

famous Diamond Saez tax formula equation

T∗′i

1− T∗′i
=

1− κ−(1+σ)

κ− 1︸ ︷︷ ︸
A

× κ− 1
πi

N∑
s=i+1

πs

(
1− E [c]

cs

)
cs

ci︸ ︷︷ ︸
B

• In continuous time we get following more familiar version

T ′ (y(θ))
1− T ′ (y(θ))

= (1 + σ)︸ ︷︷ ︸
A

× 1
θf (θ)

∫ ∞
θ

(
1− E[c]

c(s)

)
c(s)
c(θ)

dF(s)︸ ︷︷ ︸
B

• Use the DS formula to jointly solve for optimal taxes and
allocations⇒ a fixed point problem



Computing Optimal Taxes: Tax Formula Approach
• Typical assumption: T piecewise linear (Mankiw et al)
• Guess MTR for each productivity type, solve for CE
• Use DS formula to update guesses
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Practical Alternative: Flexible Ramsey Taxation

• Tax formula approach works fine if the grid is very fine
• With a coarse grid it fails – allocation the approach

converges to does not solve the Mirrlees problem
• Method is doomed to fail because the optimal schedule is

not piecewise linear

• So use a very fine grid, if possible
• But what if a fine enough grid is infeasible?
• We want an alternative approach that

1. delivers a prescription close to true Mirrleesian optimum
2. delivers similar prescription irrespective of coarseness
3. is fast and easy to compute



Flexible Ramsey taxation

• Polylogarithmic marginal tax

T ′(y) =
M∑

i=1

τi (log y)i−1 ,

with lump-sum taxes or transfers (φ0)

• Consider M = 4 so that we only search for {φ0, τ1, τ2, τ3, τ4}



Ramsey versus Mirrlees

(a) Marginal Tax Rates
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(b) Average Tax Rates
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Welfare gains: Ramsey optimum 2.0% and 1.9% for N = 10, 000
and N = 10, respectively, compared to 2.1% under the true
Mirrleesian optimum



Conclusions

• To characterize the optimum tax and transfer schedule, use
a very fine grid.

• Not feasible? Go with Ramsey!


