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No trade result in HSV QJE (and Constantinides and Duffie) works because

of special assumptions

Easy to break:

Change nature of shocks

Introduce deterministic life-cycle profile for wages and / or retirement

Make risk vary with age

We can always simply assume no borrowing / lending

But that is extreme and unrealistic

How to incorporate savings?

Must turn numerical

But can compute things in a pretty simple way.

Consider life-cycle model

Can incorporate life-cycle wage profile, retirement etc.

For simplicity, rule out other model elements (exogenous labor supply etc)

People live from age  = 0 to age  = 

Assume shocks to earnings are unit root

+1 =  + +1
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Earnings at age  are

 =  exp()

where  is a deterministic life-cycle profile

Assume borrowing constraint of the form

+1 ≥  exp()

where  is a possibly age-specific exogenous parameter. Assume  = 0
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Household solves
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Assume utility function is homothetic, e.g.,

() =
1−

1− 

FOC is

0() ≥  [0(+1)]

= if borrowing constraint does not bind

1 Trick number one

(requires unit root shocks, homothetic preferences, and borrowing constraints

proportional to income)

Consider two individuals, one with productivity exp() and wealth  and

another with productivity  exp() and wealth   If the optimal savings choice

for the first agent is ∗+1(  ) the optimal savings choice for the second is
∗+1(  ) Put differently, the only relevant state variable for the choice for
+1


is the ratio


 Reducing the state space this way is very useful.

Let’s take a transformation of variables of this form to the equations defining

a solution to the agent’s problem, using tilda’s to denote that a variable has been

divided by exp()

The transformed equations describing a solution to the household problem

are:

̃ + ̃ =  +̃

̃ ≥ 

where

̃+1 =
+1

exp(+1)
= ̃ exp(−+1)

FOC is

0(̃) ≥  [0 (̃+1 exp(+1))]

= if constraint does not bind
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Nice thing is that we have dropped  as a state, and only have ̃ 

2 Trick number two

Standard way to solve such models: start at last period and work backwards.

Will always do this

Also need to discretize  shock: assume it can take  possible values

Compare 2 ways to solve this problem

2.1 Standard way:

1. Construct grid on ̃ at each age  :
©
̃
ª
=1

2. Last period solution is, for each point on grid ̃ 

̃
¡
̃
¢
= 0

which implies

̃
¡
̃
¢
=  +̃

3. Given  grid on  and  can evaluate RHS of Euler equation at each

point on grid

4. Now turn to  =  − 1
5. At each grid point ̃−1, search for ̃−1

¡
̃−1

¢
that satisfies intertemporal

FOC. This is the computationally intensive step:

(a) Guess an ̃−1
¡
̃−1

¢
 which implies ̃−1

¡
̃−1

¢
and a value for

LHS of the EE (quick)

(b) For each possible  compute ̃

̃ = ̃−1
¡
̃−1

¢
exp(−)

(c) Find which points in the grid
©
̃
ª
the value ̃ lies in between (slow)

(d) Interpolate between these grid points to estimate ̃ (̃) and thence

0 (̃ exp())
(e) Sum over  to figure out RHS of EE

(f) Check whether Euler is satisfied, if not adjust guess (slow)

A time-consuming procedure.

Also difficult to deal with borrowing constraint. Consumption and savings

rule will tend to kink at borrowing constraint, and so therefore will marginal

utility function

But linear interpolation won’t capture this kink

Will be OK only if by chance we put a grid point at exactly the point where

the kink is located
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2.2 Alternative endogenous grid point method

Quite similar, except in how grid is constructed.

Think about working with grids on savings, instead of a grid on current

wealth

1. Construct grid on −1
©
−1

ª
=1

We know where to start this grid: at

the borrowing constraint −1

2. For each value for −1 and for each value fo  we can construct

̃ = −1 exp(−)

̃ =  +̃

and thus, summing over 

 [0 (̃ exp())]

3. Now it is a simple matter for compute (closed-form) the value for ̃−1
that satisfies the FOC with equality

0(̃−1) =  [0 (̃ exp())]

e.g., if utility is logarithmic

̃−1 =
1


h

1
̃ exp( )

i
4. Now we can ask: how much wealth must the agent have at  − 1 to be
able to afford ̃−1 and −1? From the budget constraint

̃−1 + −1 = −1 +̃−1

so we can immediately compute ̃−1 in closed form.

5. So given a grid on (exogenous values for) −1 we have constructed a
corresponding “endogenous grid” over ̃−1 Note that the lowest value for
savings in our original grid on savings at −1, −1 delivers a particular
value for ̃−1 which we can denote ̃∗−1

6. Moving forward it will be convenient to have (endogenous) values for −1
on an exogenous grid for ̃−1. We therefore need to reconstruct the

savings rule on a grid for ̃−1.

(a) This new grid should start at the lowest possible value for ̃−1 which
corresponds to −2 exp(−max)
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(b) We know that the savings rule at −1 has the property that (̃−1) =
−1 for all ̃−1 ≤ ̃∗−1 When we construct the new grid on ̃−1
(over which the savings rule is approximated) we should place a grid

point at ̃∗−1 to capture this kink.

(c) To approximate optimal savings choices at other grid points we will

need to do some interpolation.

7. We can now move toward solving for savings choices at  − 2

(a) Again, start by constructing a grid on savings at  − 2 ©−2ª=1
(b) For each point on this grid we construct, for each −1

̃−1 = −2 exp(−−1)

̃−1 = −1 +̃−1 − −1(̃−1)

where here we use the decision rule from the previous step

(c) Integrating over  we get  [0 (̃−1 exp(−1))]

(d) Again we can use the intertemporal FOC (at equality) to compute

̃−2 and then ̃−2
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