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1 Introduction

The purpose of this paper is to measure the degree of risk sharing achieved by US households.

Quantifying existing risk sharing is a prerequisite for evaluating the welfare consequences of

adjusting social insurance programs, or changing the progressivity of the tax system.

One approach to studying risk sharing is to build a structural equilibrium model, and

to use it as an artificial laboratory to study the response of consumption to individual

income fluctuations. A prominent example is the standard incomplete-markets model, where

households self-insure against income fluctuations by borrowing and lending via a risk-free

bond.

However, there are many other ways households can smooth shocks and share risk, in-

cluding flexible labor supply, progressive taxation, social insurance programs, within-family

transfers, informal networks, and default or bankruptcy (see Heathcote, Storesletten, and

Violante (2009) for a survey). A problem with the structural approach is that the total

amount of risk sharing achieved in equilibrium will be sensitive to the details of which risk-

sharing mechanisms are introduced and how they are modelled, casting doubt on whether

any particular formulation comes close to replicating the amount of risk sharing households

can achieve in practice (see, for example, Kaplan and Violante, 2010). Thus, Deaton (1997)

has argued that a more fruitful approach is to try to quantify directly the overall degree of

risk sharing in the economy, while remaining agnostic about the exact details on how house-

holds achieve this outcome.1 One influential recent example of this less structural approach

is Blundell, Pistaferri, and Preston (2008), who estimate the degree to which permanent

changes in earnings transmit to consumption in the United States.

In this paper, we take a fully structural approach to measuring risk-sharing that is

nonetheless designed to address the Deaton critique. We start with a standard incomplete-

markets model, and explicitly introduce two important smoothing mechanisms against id-

iosyncratic wage fluctuations: elastic labor supply and progressive taxation. The model also

1Deaton (1997, pp. 372-374) writes: “Saving is only one of the ways people can protect their consumption
against fluctuations in their income. An alternative is to rely on other people, to share risk with friends
and kin, with neighbors, or with other anonymous participants through private or government insurance
schemes, or through participation in financial markets ... [T]he very multiplicity of existing mechanisms
makes it likely that there is at least partial insurance through financial or social institutions, and that such
risk sharing adds to the possibilities for autarkic consumption smoothing through intertemporal transfers
of money or goods ... Although it is possible to examine the mechanisms, the insurance contracts, tithes
and transfers, their multiplicity makes it attractive to look directly at the magnitude that is supposed to be
smoothed, namely consumption.”
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allows for insurance against a subset of wage fluctuations, as a flexible way to capture the

presence of additional risk-sharing mechanisms. Inspired by Deaton, our focus will be on

letting the data identify the extent of this residual insurance, rather than on specifying the

details of how it is achieved.

The key advantage of retaining a structural approach is that it allows us to integrate

evidence on risk sharing from data on hours worked and consumption in a theoretically

consistent way. Most of the risk sharing literature to date has focussed on exploring comove-

ment between household income and consumption (see e.g., Jappelli and Pistaferri, 2010),

but data on individual labor supply turn out to be very informative about insurance against

idiosyncratic shocks. The logic is simply that individuals should adjust hours worked more

strongly in response to insurable versus uninsurable wage fluctuations, reflecting the absence

of offsetting wealth effects in the former case.

Relative to the existing theoretical literature, the key innovation is that the framework

developed here allows for two different types of shocks to individual hourly wages that are

distinguished by their degree of insurability. As in standard incomplete markets models, no

explicit insurance exists for the first type: these “uninsurable” shocks can only be smoothed

via adjustments to own hours worked, via borrowing and lending in a riskless bond, or

via government redistribution through progressive taxation. In contrast, the second type

of shock can be fully insured, as in complete markets models. One motivation for this

“insurable” component is that in reality some changes in individual wages are perfectly

forecastable by agents and hence easily smoothed. In addition, there are certain shocks

which can be insured within the family or for which existing institutions provide explicit

insurance, such as unemployment or disability shocks. Since some but not all shocks are

explicitly insurable, this is an economy with partial insurance.

In the equilibrium of the model, agents choose to not use the bond to smooth the unin-

surable shock. This result extends the logic in Constantinides and Duffie (1996) to a much

richer environment. Thanks to this result, and in sharp contrast to the standard incomplete

markets model, equilibrium allocations of consumption and hours worked can be expressed in

closed form, as log-linear functions of the two idiosyncratic wage components and an idiosyn-

cratic preference shifter (we allow for heterogeneity in the relative tastes for consumption

versus work).

These closed-form log-linear allocations make it possible to compute and interpret cross-

sectional variances and covariances of the joint equilibrium distribution of wages, hours, and
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consumption. We use information contained in both the “macro facts” on the distributions

of these variables in levels that have motivated recent macroeconomic investigations (e.g.,

Attanasio and Davis, 1996; Krueger and Perri, 2006; Heathcote, Storesletten, and Violante

2010b), and the “micro facts” on the distributions in growth rates that have been the primary

focus of labor economists (e.g., Abowd and Card, 1989; Blundell, Pistaferri, and Preston,

2008). The analytical expressions for these cross-sectional moments allow us to formally

prove identification of all the model’s parameters – something that is usually impossible in

large scale structural models – under mild data requirements that are satisfied in standard

micro data sets. In fact, we prove that the model is fully identified given only panel data

on wages and hours worked, i.e., without any consumption data. In light of the recent

studies questioning the quality of self-reported consumption expenditures in the US (e.g.,

Attanasio, Battistin, and Ichimura, 2007; Aguiar and Bils, 2011), it is valuable to be able

to assess whether estimates of risk sharing derived from wage and hours data alone are

consistent with those that also use consumption moments.

Our baseline estimation uses data on wages and hours from the Panel Study of Income

Dynamics (PSID) over the period 1967-2006, and consumption data from the Consumer

Expenditure Survey (CEX) over the period 1980-2006. The estimated model replicates well

the evolution of the empirical cross-sectional distribution over wages, hours worked and

consumption, both over time and over the life cycle.

We use the model to derive quantitative answers to three central questions concerning

risk-sharing in the US economy: (1) how effectively can households smooth idiosyncratic

wage fluctuations?, (2) how has the extent of risk sharing changed over the last four decades,

a period of sharply rising wage inequality?, and (3) what is the role of life-cycle shocks and

initial heterogeneity in determining cross-sectional dispersion in economic outcomes?

First, we ask how much individual wage risk can be smoothed, and what are the relative

contributions to smoothing of explicit insurance, labor supply adjustments, and progressive

taxation. Blundell, Pistaferri, and Preston (2008) argue that a natural way to quantify con-

sumption smoothing is to measure how much of a typical permanent income shock passes

through to consumption. Our model suggests that this pass-through coefficient from individ-

ual wages to household consumption is around 40%, or equivalently that 60% of permanent

wage fluctuations are effectively smoothed. Where does this smoothing come from? Half of

it stems from directly insurable shocks, one-third reflects progressive taxation, and the rest

reflects adjustments to labor supply.
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An alternative metric for consumption smoothing, common in the literature, is the ratio

of the within-cohort change in the variance of log consumption to the corresponding change

in the variance of log income (e.g., Blundell and Preston, 1998; Storesletten, Telmer, and

Yaron, 2004a). We demonstrate that these two measures of pass-through coincide only

when earnings taxation is proportional and labor supply is absent as smoothing channel

for uninsurable shocks (e.g., zero Frisch elasticity or balanced growth preferences). Our

model also indicates that, for plausible parameter estimates, the ratio-of-variances statistic

is always smaller than the pass-through coefficient.

Second, we ask how risk sharing has changed over time. We find that US households were

effectively able to insure two thirds of the sharp increase in wage inequality over the past

40 years. In 1967 the insurable component of wages accounted for around 25% of the cross-

sectional variance of log wages, while by the early 1980s this fraction had risen to around

45%. Since then, the variances of the insurable and uninsurable components of wages have

risen at a similar rate, leaving the fraction of wage fluctuations insured relatively stable.

Data on hours worked are an essential input for these estimates, since no consumption data

is available prior to 1980, and it is the observed increase in the covariance between wages

and hours that indicates an increase in the degree of risk sharing. Reassuringly, after 1980,

we obtain very similar estimates for the relative importance of insurable and uninsurable

shocks regardless of whether we use all available data, including consumption, or just data

on earnings and hours worked.

Third, we use the estimated model to decompose inequality in the cross section into com-

ponents reflecting life-cycle shocks versus initial heterogeneity in productivity and the disu-

tility of work effort. This decomposition is unique and additive in our framework. Roughly

half of the total cross-sectional variance in earnings reflects life-cycle shocks to productiv-

ity. In contrast, these shocks account for less than 20% of the cross-sectional variances

of consumption and hours worked. Net of measurement error, the most important source

of dispersion in consumption is initial heterogeneity in productivity. For hours worked, in

contrast, it is initial heterogeneity in preferences.

The rest of the paper is organized as follows. Section 2 develops our framework, derives

the equilibrium allocations, and explains how we obtain tractability. In Section 3, we derive

closed-form expressions for the equilibrium cross-sectional moments. Section 4 proves how

these moments allow us to identify all the structural parameters of the model, and describes

the data and estimation algorithm. Section 5 lays out the results of the quantitative analysis.
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Section 6 concludes.

2 Model economy

We first describe the model formally. Next, we discuss the key assumptions in detail.

Demographics We adopt the Yaari perpetual youth model: agents are born at age zero

and survive from age a to age a+1 with constant probability δ < 1. A new generation with

mass (1− δ) enters the economy at each date t. Thus, the measure of agents of age a is

(1− δ)δa, and the total population size is unity.

Preferences Lifetime utility for an agent born (i.e., entering the labor market) in cohort

birth year b is given by

Eb

∞∑

t=b

(βδ)t−b u (ct, ht;ϕ) , (1)

where the expectation is taken over sequences of shocks defined below. Here ct denotes

consumption at date t for an agent of age a = t − b, while ht is the corresponding value

for hours worked. Agents discount the future at rate βδ, where β < 1 is the pure discount

factor. Period utility is

u (ct, ht;ϕ) =
c1−γ
t − 1

1− γ
− exp (ϕ)

h1+σ
t

1 + σ
. (2)

The parameter γ is the inverse of the intertemporal elasticity of substitution for con-

sumption, and σ governs the elasticity of labor supply.2 The preference weight ϕ captures

the strength of an individual’s aversion to work.3 The distribution of ϕ for the cohort with

birth year t is denoted Fϕt, with cohort-specific variance vϕt. We incorporate preference

heterogeneity because, as we will show, it is important for explaining the observed cross-

sectional joint distribution over wages, hours, and consumption.4 In Section 2.3.2 we discuss

how our results extend to alternative preference specifications.

2The parameter γ is also related to risk aversion. In particular, the coefficient of relative risk aversion is
1/(1/γ + 1/σ) (see Swanson, 2012). As we explain below, the most important role of γ in our model is that
it determines the relative strength of income and substitution effects on hours worked.

3Note that preferences are defined over total hours per period, and model agents are implicitly indifferent
between alternative ways to allocate hours with a period. Thus, the model cannot address the question of
how total annual hours should be divided between hours worked per day (e.g., overtime), days worked per
week (part-time work), and weeks worked by year (non-employment).

4It has long been recognized that a sizeable fraction of cross-sectional dispersion in hours worked is
unrelated to dispersion in wages (e.g., Abowd and Card, 1989).
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Idiosyncratic risk The population in the economy is partitioned into groups that we

will refer to as “islands,” where each island contains a continuum of individual agents. Agents

face labor productivity shocks at the individual level, which are uncorrelated across members

of each island, and shocks at the island level, which are common to all members of a given

island, but uncorrelated across islands. Individual labor productivity w is given (in logs)

by the sum of the island-level component, denoted α, and the (orthogonal) individual-level

component, denoted ε:

logwt = αt + εt. (3)

The market structure outlined below will assume differential trading opportunities between

versus within islands, translating into differential insurance against shocks to α versus ε.

The island-level component α follows a random walk:

αt = αt−1 + ωt,

where the innovation ω is drawn from the distribution Fωt with variance vωt at time t. The

individual-level component ε is itself the sum of two orthogonal random variables:

εt = κt + θt.

Here θ is a transitory (independently distributed over time) shock drawn from Fθt with

variance vθt, while κ is a permanent component that follows a second unit root process:

κt = κt−1 + ηt,

where the innovation η is drawn from the distribution Fηt with variance vηt.
5

Agents who enter the labor market at age a = 0 in year t draw initial realizations α0 and

κ0 from distributions Fα0t and Fκ0t, with cohort-specific variances vα0t and vκ0t. The initial

draws ϕ, α0, and κ0 are assumed to be uncorrelated.6

5The assumed statistical process for individual efficiency units – unit root plus independently distributed
shocks – has a long tradition in the literature that estimates statistical models for individual wage dynamics
(see, e.g., MaCurdy, 1982). The empirical autocovariance function for individual wages displays a sharp
decline at the first lag, indicating the presence of a transitory component in wages. At the same time, within-
cohort wage dispersion increases approximately linearly with age, suggesting the presence of permanent
shocks.

6The initial draws (ϕ, α0) could in principle be correlated if, for example, wages at labor market entry
are a function of schooling, and schooling depends on the preference weight, ϕ. In a previous version of
this paper, we allowed for correlation between α0 and ϕ. The model was still tractable, but the estimated
correlation coefficient was insignificantly different from zero.
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A law of large numbers (e.g., Uhlig, 1996) can be applied twice so that individual-level ε

shocks wash out within an island, and island-level α shocks induce no aggregate uncertainty

in the economy as a whole (see Attanasio and Rı́os-Rull (2000) for a similar structure).

Production Production of the final consumption good takes place through a constant

returns to scale technology with labor as the only input. The economy-wide good and labor

markets are frictionless and perfectly competitive. Hence, individual wages equal individual

productivities (units of effective labor per hour worked).

Taxes and redistribution The government operates a progressive tax system that pro-

vides public insurance. Following Benabou (2002), an individual with a gross labor income

yt = wtht receives post-government earnings ỹt given by

ỹt = λ (yt)
1−τ . (4)

The fiscal parameters λ and τ are assumed constant over time. Loosely speaking, λ

defines the level of taxation, while τ ≥ 0 defines the rate of progressivity built into the tax

system. To see this, note that log(ỹt) = log(λ) + (1 − τ) log(yt), and thus (1 − τ) defines

the elasticity of after-tax earnings to pre-tax earnings. For τ = 0 the system implies a flat

tax 1 − λ on labor income, while for τ > 0 the tax system is progressive. The government

uses aggregate net tax revenue to finance a non-valued public consumption good Gt, which

adjusts to balance the government budget on a period-by-period basis. While this model of

taxation is simple, it is sufficiently flexible to offer a reasonable approximation to the actual

US tax system (see Section 4.3).

Market structure All assets in the economy are in zero net supply, and asset markets are

competitive. At birth, each agent is endowed with zero financial wealth.7 Individuals born

in year b draw values for α0 and ϕ before any markets open. They are then allocated to an is-

land, which is defined by an ex ante unknown sequence {ωt}
∞
t=b+1 that will apply to all island

members. Within each island, agents trade a complete set of insurance contracts. In particu-

lar, in every period t ≥ b, agents can purchase contracts indexed to st+1 = (ωt+1, ηt+1, θt+1).
8

Scope for insurance across islands is more limited: agents can only trade insurance contracts

indexed to their individual-level shocks (ηt+1, θt+1), but inter-island contracts contingent on

the realization of the island-level shock ωt+1 are ruled out.

7It is straightforward to relax the assumption of zero initial individual financial wealth. The key require-
ment, as will become clear below, is that average initial wealth on each island is zero.

8New labor market entrants at date b can also purchase contracts indexed to (κ0, θb).
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Insurance contracts incorporate mortality risk: if an agent purchases one unit of insurance

against any state st+1, the contract pays δ−1 units of consumption if the agent survives to

the next period and st+1 is realized, and 0 units otherwise.

Note that agents can effectively trade risk-free bonds freely within or across islands. In

particular, purchasing δ units of insurance for every possible realization of the pair (ηt+1, θt+1)

delivers one unit of consumption risk-free in the next period.

Information Agents are assumed to take as given the sequences of distributions {Fϕt, Fα0t,

Fκ0t, Fωt, Fηt, Fθt}. Thus they have perfect foresight over future wage distributions.9

2.1 Agent’s problem

Let st = {sb, sb+1, ..., st} denote the individual history of the shocks for an agent from birth

year b up to date t, where

sj =

{
(b, ϕ, α0, κ0, θb) ∈ Sb = N× R4 for j = b

(ωj, ηj, θj) ∈ S = R3 for j > b
(5)

with st ∈ Sb × St−b.

Let Qt(S; s
t) denote the price of insurance claims purchased at date t from local (within-

island) insurers by an agent with history st that deliver one unit of consumption at t + 1

if and only st+1 ∈ S ⊆ S. Let Bt(st+1; s
t) denote the quantity of the claim purchased

that pays in individual state st+1. Recall that insurers can also offer contracts indexed to

(ηt+1, θt+1) to agents in other islands. Define zt+1 ≡ (ηt+1, θt+1) where zt+1 ∈ Z ⊆ Z =R2.

Let Q∗
t (Z; s

t) denote the price of insurance claims purchased at date t from outside (between-

island) insurers by an agent with history st that deliver one unit of consumption at t + 1 if

and only zt+1 ∈ Z. Let B∗
t (zt+1; s

t) denote the quantity of the claim purchased from outside

insurers that pays upon the realization zt+1. The agent’s budget constraint is given by

λ
[
wt

(
st
)
ht

(
st
)]1−τ

+ dt
(
st
)

= ct
(
st
)
+

∫

S

Qt

(
st+1; s

t
)
Bt

(
st+1; s

t
)
dst+1 (6)

+

∫

Z

Q∗
t

(
zt+1; s

t
)
B∗

t

(
zt+1; s

t
)
dzt+1,

where realized wealth at node st = (st−1, st) is given by

dt(s
t) = δ−1

[
Bt−1(st; s

t−1) +B∗
t−1

(
zt; s

t−1
)]

.

9Alternatively, one could assume that the variances of these distributions themselves follow some stochas-
tic process. The expression for the equilibrium interest rate would be affected, but equilibrium allocations
would remain identical to those described below.

8



The problem for an agent entering the labor market at date b is to maximize (1) subject

to a sequence of budget constraints of the form (6), and the wage process. In addition,

agents face limits on borrowing that rule out Ponzi schemes, and non-negativity constraints

on consumption and hours worked.

2.2 Competitive equilibrium

Given sequences {Fϕt, Fα0t, Fκ0t;Fωt, Fηt, Fθt}, a competitive equilibrium is a set of allocations

{ct(s
t), ht(s

t), dt(s
t), Bt(·; s

t), B∗
t (·; s

t)} and prices {Qt(S; s
t), Q∗

t (Z; s
t)} for all dates t, all

histories st ∈ Sb × St−b, and all S ⊆ S, Z ⊆ Z such that (i) allocations maximize expected

lifetime utility, (ii) insurance markets clear, and (iii) the economy-wide markets for the final

good and labor services clear.

Proposition 1 [competitive equilibrium] There exists a competitive equilibrium char-

acterized as follows:

(i) There is no insurance trade between islands: B∗
t (Z; s

t) = 0 for all Z and all st.

(ii) Consumption and hours are given by

log ct
(
st
)

= − (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + Ca

t (7)

log ht

(
st
)

= −ϕ̂ +

(
1− γ

σ̂ + γ

)
αt +

1

σ̂
εt +Ha

t , (8)

where a = t−b is the age of the individual, Ca
t andHa

t are age and date-specific constants

(see Appendix A.1), 1/σ̂ ≡ (1− τ) / (σ + τ) is a tax-modified Frisch elasticity, and

ϕ̂ ≡ ϕ/ (σ + γ + τ(1− γ)) is a rescaled preference weight.

(iii) The prices of insurance claims are given by

Qt

(
S; st

)
= Qt (S) = β exp (−γ∆Ct+1)

∫

S

exp

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
ωt+1

)
dFs,t+1(9)

Q∗
t

(
Z; st

)
= Q∗

t (Z) = Pr ((ηt+1, θt+1) ∈ Z)×Qt(S),

where Fst is the joint distribution over (ω, η, θ) at date t, Qt(S) is the price of a risk-free

bond, and ∆Ct+1 ≡ Ca+1
t+1 − Ca

t is independent of age.
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Proof. See Appendix A.1.

Part (i) of Proposition 1 says that there is an equilibrium in which all trade takes place

within islands. This result implies zero insurance against the αt component of idiosyncratic

wage risk, because shocks to αt are common to all members of an island. In particular,

there is no self-insurance, via non-contingent borrowing and lending, against these shocks.

In contrast, there is perfect insurance, by assumption, against shocks to εt. Thus, in this

equilibrium, there is a sharp dichotomy between one type of risk which is uninsured, and

another that is fully insured. In what follows, we will use the label “uninsurable” to denote

the ω shock and the initial draws α0 and ϕ, and the label “insurable” to denote the (η, θ)

shocks and the initial draw κ0. When the variance of insurable shocks is zero, equilibrium

allocations correspond to autarky. When the variance of uninsurable shocks is zero, there is

complete insurance against idiosyncratic risk. In the general case, when both types of shocks

have positive variance, insurance is partial.

Part (ii) characterizes equilibrium allocations for consumption and hours worked in closed

form. These expressions indicate that the vector of cumulated values for the shocks (αt, εt)

together with ϕ and age a contain sufficient information to fully describe an individual’s

equilibrium choices at node st. The power of this result lies in the fact that these are all

exogenous states. Crucially, individual wealth is a redundant state variable, in the sense

that it is also only a function of (a, ϕ, αt, εt). The expression for wealth dt is in Appendix

A.1. Note that no distributional assumptions for wage shocks or preference heterogeneity

are required to deliver these functional forms for equilibrium allocations.10

Part (iii) describes the insurance prices supporting this equilibrium. The key result is

that the prices of insurance contracts on the inter-island market are actuarially fair, in the

sense that they are equal to event-specific probabilities times the risk-free bond price Qt(S)

– the price at which all agents are indifferent between borrowing and lending on the margin.

At these prices, agents have no incentive to buy insurance from or sell insurance to agents

on other islands, thereby supporting the no-trade result in part (i).

The logic of the proof for Proposition 1 is as follows. We first guess that all insur-

ance claims are traded within island and that there is no insurance trade between islands.

Hence aggregate island-level net savings is zero on each island. Because insurance mar-

10The distributions only affect the separable constants Ca
t and Ha

t . We implicitly assume that the distribu-
tions imply finite values for these constants. The absence of an explicit solution for Ca

t and Ha
t is no obstacle

for the empirical analysis, since the constants can be modeled through age and time dummies in individual
consumption and hours observations.
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kets are complete within an island, we can solve for the island-specific allocations via a

simple static equal-weight planner’s problem.11 We can use planner problems to solve for

within-island allocations, notwithstanding the presence of progressive distortionary taxation

at the economy-wide level, because each island planner controls a measure zero of aggregate

resources and therefore takes the tax function as exogenous. With expressions for consump-

tion and hours worked in hand, we use the agent’s intertemporal first-order condition to

compute the implied (potentially island-specific) insurance prices. Finally, we verify that

agents on every island assign the same value to any insurance contract that can be traded,

and thus that there are no gains from inter-island trade.

Interpreting equilibrium allocations The impact of the preference parameter ϕ on

hours and consumption is readily interpreted: a stronger relative distaste for work (higher

ϕ) reduces labor supply, which transmits to earnings and consumption.

Hours worked are increasing in the insurable component εt = κt+ θt, and the response of

hours to shocks to εt is defined by the tax-modified Frisch elasticity, 1/σ̂ ≡ (1− τ) / (σ + τ).

Progressive taxation (τ > 0) lowers the tax-modified Frisch elasticity because it reduces the

return to increasing hours worked in response to a rise in pre-tax wages. While full insurance

with respect to εt rules out any income effect on hours worked, uninsurable permanent shocks

to αt do have an income effect which is regulated by γ. If γ > 1, the income effect dominates

the substitution effect, and hours worked decline in response to an increase in αt. If γ < 1,

the substitution effect dominates and hours increase.

Individual consumption is independent of εt, since these shocks are fully insured and util-

ity is separable between consumption and hours. The response of consumption to uninsur-

able wage shocks depends on the response of hours worked and the progressivity of taxation.

Stronger income effects (larger γ) reduce the pass-through from wage shocks to consump-

tion, as does more progressive taxation (larger τ). Note that the expression for individual

consumption is not what the permanent income hypothesis would imply. Consumption does

follow a random walk, but some permanent shocks (innovations ηt) are insured and thus do

not affect consumption. In other words, consumption in our model exhibits “excess smooth-

ness” (as originally defined by Campbell and Deaton, 1989). It is precisely this feature of

the data that has motivated a large amount of recent research aimed at developing “par-

11Within-island allocations can be determined using equal-weight island-level planning problems because
we defined an island as a group of agents with the same birth date b, common initial conditions

(
ϕ, α0

)
, and

a common sequence {ωs}
∞

s=b+1.
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tial insurance” models that lie in between the bond economy and complete markets (e.g.,

Krueger and Perri, 2006; Ales and Maziero, 2009; Attanasio and Pavoni, 2011; ).

2.3 Tractability of the framework

With few exceptions, incomplete markets models do not admit an analytical solution and

numerical methods are required to solve for equilibrium allocations.12 In this section we

explain how we retain tractability, and we relate this result to the existing literature. Readers

who are more interested in the empirical application can skip directly to Section 3.

2.3.1 How we retain tractability

There are two keys to tractability in our framework: (i) individual wealth is a redundant

state variable, and (ii) agents have access to perfect insurance against some shocks and no

explicit insurance against others. To achieve this insurance dichotomy as an equilibrium

outcome, the island-economy structure is important.

Why wealth is a redundant state The reason individual wealth is a redundant state

variable is twofold. First, even though the within-island equilibrium wealth distribution

is non-degenerate, allocations can be characterized without reference to it: full insurance

within the island implies that within-island allocations can be derived by solving an island-

level planner problem with an equal-weight welfare function corresponding to common initial

asset positions for all agents, subject to an island-level resource constraint.

Second, the inter-island wealth distribution does not show up in allocations because,

in equilibrium, this distribution remains degenerate at zero. This second argument can be

explained in three simple steps. To understand why there is no asset trade between islands, it

is sufficient to understand why there is no trade in a risk-free bond.13 Let rt+1 = − logQt(S)

12In standard (intractable) incomplete markets models, decision rules depend on wealth, and the distribu-
tion of wealth is endogenous and must be solved for numerically. The literature has followed three alternative
routes to avoid this outcome. The first is to assume a statistical model for income risk (permanent, multi-
plicative shocks) such that the equilibrium wealth distribution remains degenerate at zero (Constantinides
and Duffie, 1996). The second is to assume a preference specification – quadratic or in the constant absolute
risk aversion (CARA) class – such that the precautionary motive for saving is either zero or independent of
wealth (Caballero, 1990). The third is to allow agents to control the amount of idiosyncratic risk that they
face such that equilibrium exposure to idiosyncratic risk is proportional to wealth, given CRRA preferences
(Krebs, 2003; Angeletos, 2007). Krebs (2003) allows for human capital accumulation, so that agents can
control the composition between (safe) physical and (risky) human wealth independently of total wealth by
making savings choices in both assets. Angeletos (2007) models idiosyncratic risk to entrepreneurial business
income rather than labor income. In his model agents control portfolio exposure to idiosyncratic risk by
adjusting the quantity of entrepreneurial capital in total savings.

13Recall that inter-island insurance prices are simply event-specific probabilities times the bond price.
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denote the equilibrium interest rate and ρ = − log β the discount rate. In the model,

individuals have three saving motives: an intertemporal motive proportional to the gap

between rt+1 and ρ, a smoothing motive linked to expected earnings growth over the life

cycle, and a precautionary motive that is a function of the variance of uninsurable island-

level shocks vω,t+1. Importantly, each of these three factors applies with the same force on all

islands. The strength of the intertemporal motive is given by the term (rt+1 − ρ) /γ, common

across agents. All islands have the same smoothing motive, because island-level expected

earnings growth is independent of age and of the current wage. The precautionary motive is

the same because all agents face the same variance for the uninsurable component of wages.

Consequently, there exists an economy-wide interest rate rt+1 at which, in equilibrium, the

(negative) intertemporal motive exactly offsets the (negative) smoothing motive and the

(positive) precautionary motive, and no agent wants to either borrow or lend across islands.

To gain more intuition, it is useful to make a specific distributional assumption. If each

variable xt ∈ (ωt, ηt, θt) is distributed Normally, xt ∼ N (−vxt/2, vxt), then asset prices can

be derived in closed form. Focusing, for simplicity, on the special case σ → ∞ (inelastic

labor supply) and τ = 0 (proportional taxation), we have

rt+1 − ρ

γ
+ (1 + γ)

vω,t+1

2
= 0. (10)

The first term measures the intertemporal motive to dis-save. The second term, capturing the

precautionary motive for saving, is equal to half the variance of the island-level productivity

shocks times the coefficient of relative prudence, (1 + γ). The equilibrium interest rate is

such that the two saving motives exactly offset.14

Insurance dichotomy Our model of risk and insurance (two types of shocks, one in-

surable and one uninsurable) stands in contrast to the standard approach (e.g., Huggett,

1994), in which there is a single shock to wages that can be partially smoothed. Our model

is tractable, while the standard model is not. But which structure is most empirically rele-

vant? The sharp insurability dichotomy in our model is certainly extreme, but it is broadly

consistent with the idea that some wage changes are much more insurable than others. For

example, as Low, Meghir, and Pistaferri (2010) emphasize, insurance against job loss and

14See eq. (A5) in the Technical Appendix A for the interest rate expression with σ finite and τ 6= 0.
If γ > 1, then hours respond negatively to uninsurable shocks (see eq. 8). In this case, a higher Frisch
elasticity reduces the precautionary saving motive, since labor supply provides a useful hedge against risk.
Tax progressivity (τ > 0) reduces the precautionary saving motive.

13



severe health deterioration exists through explicit institutional arrangements, such as unem-

ployment compensation and disability insurance. In addition, one should expect individuals

to perfectly smooth forecastable wage changes, such as automatic raises linked to tenure.

In contrast, no explicit insurance exists against many other shocks – such as unanticipated

wage drops linked to long-lasting reductions in the demand for specific skills or occupations.

Note that while our description of the environment assumes that (i) all individual in-

surance arises from explicit markets and state-contingent financial income flows, and (ii)

wage growth is unpredictable, one could generalize both assumptions. The same allocations

for consumption and hours worked can be supported through a combination of non-market

mechanisms, including public insurance programs, within-family state-contingent transfers,

and spousal labor supply. Moreover, if agents could perfectly foresee future innovations

(ηt, θt) , then trade in a non-contingent bond would suffice to allow them to perfectly smooth

consumption in response to these wage changes. We use the label “insurable shocks” as a

catchall for both insurable (through market and non-market mechanisms) and forecastable

wage changes.15 We will let the data discipline the overall amount of insurance individuals

have access to, over and above progressive taxation and own labor supply, without digging

further into its precise origins.

Island structure The island configuration allows to achieve the equilibrium outcome in

which some shocks are perfectly insured while others remain uninsured. Because unrestricted

contracts are only exchanged within the island, this partition prevents agents from pooling

the island-level risk.16

The sorts of insurance contracts that be traded within and between islands are spec-

ified exogenously. Exploring whether differential information frictions are a viable micro-

foundation for this differential availability of insurance is of some importance, but it goes

beyond the scope of this paper. As a starting point, one may assume that within-island

information about shocks and insurance contracts is perfect, but that neither individual

shocks nor individual insurance arrangements can be observed across islands (as in Cole and

Kocherlakota, 2001, and Ales and Maziero, 2011). The first assumption allows for full insur-

ance within islands. The second may make it impossible to improve insurance of island-level

15Cunha, Heckman, and Navarro (2005) and Guvenen and Smith (2010), among others, explain the diffi-
culty in distinguishing, empirically, between insurable shocks and predictable changes to income.

16A similar modelling design is common in international economics, where perfect insurance is often
assumed against idiosyncratic risk within a country, while only a bond can be traded internationally to
smooth country-level shocks (see, for example, Baxter and Crucini, 1995).
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shocks beyond what can be achieved through trade in a risk-free bond.

Finally, the reader might wonder what the empirical counterpart of an island is. For

expositional simplicity, we have assumed that households are permanently assigned to an

island and, therefore, always trade insurance contracts within the same set of agents, all

of whom experience a common sequence of ωt shocks. Under this implementation of the

island structure, an island comprises of households whose consumption comoves closely over

long periods of time. One particularly appealing empirical counterpart to a model island

would then be a network of family members. Under such an interpretation, idiosyncratic

risks within the family (model εt) would be perfectly pooled, while any common component

to family wages (model αt) would remain uninsured. Such a common component arises

naturally if family members are concentrated within regions, occupations, or skill-levels and

are therefore unable to diversify region- occupation- or skill-specific shocks.17 However, it

is important to note that identical equilibrium allocations arise under an alternative im-

plementation of the island structure, according to which a risk-sharing group at date t is

defined only by a common ωt+1 instead of a common sequence {ωt+1, ωt+2, ...}.
18 Under this

implementation, the theory puts many fewer restrictions that can be tested empirically: an

island is just a group of agents pooling a subset of idiosyncratic shocks at a point in time,

whose consumption need not be correlated in the long run. In the special case in which

insurable shocks are i.i.d. over time, the island structure can be dispensed with altogether.19

As we show in Sections 3 and 4, for identification and estimation of the model, it is

enough to use economy-wide cross-sectional moments. Because these moments aggregate

dispersion within and between groups, we do not need to determine empirical counterparts

to model islands.

2.3.2 Relation to Constantinides and Duffie (1996)

Constantinides and Duffie (1996), henceforth CD, is an important forebear of our model.

The key insight of CD is that a no-trade equilibrium exists when: (1) the exogenous process

for disposable income is a multiplicative unit root with innovations drawn from a distribution

17Angelucci et al. (2012) provide some empirical evidence consistent with this view.
18To see this, note that our decentralization assumes trade in insurance contracts indexed only to one

period ahead realizations for (ωt+1, ηt+1, θt+1). Moreover, the only important restriction on the pattern of
trade is that the set of agents trading these contracts will all draw the same (unknown) ωt+1 innovation.

19In particular, if κt = 0 for all t so that εt = θt, then an alternative way to implement the equilibrium
allocations described in the text is to assume that agents first observe the innovation ωt, and then trade –
economy-wide – insurance claims contingent only on the realization of the transitory component θt.
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common to all agents, (2) preferences are in the power utility class, (3) assets are in zero net

supply, and agents are endowed with zero initial wealth.20 We extend CD’s environment in

four dimensions that are important for a quantitative study of risk sharing.

First, our primitive exogenous stochastic process is over hourly wages and also includes a

transitory component beyond the unit root. Gross earnings are endogenous since individuals

control their labor supply. Showing that the no-trade result extends to preferences defined

over labor supply as well as consumption is important because, as will become clear shortly,

data on hours worked are a rich source of information on the nature of risk and risk sharing.

In Heathcote, Storesletten, and Violante (2011b) we generalize the preference class under

which the no-trade result holds beyond our baseline specification (2). We provide a simple

static sufficient condition that can be used to check whether there exists an equilibrium

with no inter-island trade, for any particular utility function defined over consumption and

hours worked. We use this condition to show that the no-trade result extends to Greenwood-

Hercowitz-Huffman, Cobb-Douglas, and recursive Epstein-Zin preferences. These alternative

specifications also deliver closed-form expressions for equilibrium allocations.

Second, we allow for progressive taxation, which allows us to quantify the role of the tax

system in consumption smoothing.

Third, agents in our model differ with respect to preferences, in addition to productivity.

This feature is important because we do not want to impose a priori that the entire cross-

sectional dispersion in consumption and hours worked is driven by dispersion in wages.

Finally, and most importantly, in our economy some risks are insurable within islands, so

our version of the no-trade result applies across groups rather than across individuals. Hence,

our model allows for partial consumption insurance against disposable earnings shocks – a

critical requirement for bringing the model to the data successfully (as shown by Blundell,

Preston, and Pistaferri, 2008). In contrast, the most direct interpretation of the CD model

is that theirs is a world with no risk sharing in which each individual consumes his or her

endowment. An alternative interpretation is that their postulated endowment process is

“post-trade” and incorporates non-modeled risk-sharing mechanisms against fundamental

shocks. Relative to this alternative interpretation, the advantage of our setup is that we

explicitly model and quantify the riks-sharing channels available to households: labor sup-

20Both CD’s model and ours can have assets in positive net supply in a trivial case, namely when agents
are endowed at birth with a unit of the market portfolio and pay a lump-sum tax each period equal to the
dividend on the market portfolio each period. In equilibrium, agents never trade away from their initial
holding of the market portfolio, rendering the allocations (7)-(8) unchanged.
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ply (from wages to earnings), progressive taxation (from pre- to after-tax earnings), and

additional insurance (from after-tax earnings to consumption).

3 Cross-sectional implications

The model has thus far abstracted from variation in household composition, while actual

households in the data vary with respect to household size and the number of potential

workers. Moreover, measurement error is pervasive in micro data. In this section, we first

describe how to augment our theoretical allocations to address these two issues. Next, we

use these augmented theoretical allocations to derive, and interpret, closed-form expressions

for (co-)variances of the equilibrium cross-sectional joint distribution of consumption, hours,

and wages – the key moments used for model identification and estimation.

3.1 Augmented theoretical allocations

Modeling household composition To address the first issue, we generalize the model

to explicitly incorporate variation in household size. This extension delivers a theoretically

coherent approach for controlling for household composition in the data.

Let g and k denote the number of adults (grown-ups) and children (kids) in a particular

household. All members of a given household reside on the same island. Let e (g, k) be a

function that defines the economies of scale enjoyed by a household of type (g, k) such that

effective per-person consumption is given by household consumption c divided by e(g, k),

where e(1, 0) is normalized to unity. Children receive no weight in household utility. Thus

period utility for a household of type (ϕ, g, k) is given by

u (c, {hi}
g
i=1 ;ϕ, g, k) =

g

1− γ

(
c

e (g, k)

)1−γ

−
exp (ϕ)

1 + σ

g∑

i=1

h1+σ
i . (11)

One could make alternative assumptions regarding whether agents can insure ex ante

against the type (g, k) of household to which they are allocated. In Appendix A.2, we solve

for allocations in the two polar cases where there is full insurance and no insurance against

(g, k), respectively. The key difference between the two models is that the full insurance

model implies that hours worked should be independent of household composition, while

the no-insurance model implies that hours should vary systematically with household size

(when γ 6= 1). The reason household type does not affect equilibrium hours in the insurable

household composition model is that household type has no impact on productivity or the
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disutility of labor effort, and thus it would be inefficient for individuals in different-size

households to work different numbers of hours.

Motivated by this distinction, we experimented with regressing log hours on household

composition dummies. Conditional on annual hours being positive, household composition

explains essentially none of the observed variation in hours worked on the intensive margin,

which is evidence in favor of the insurable model of household composition.

In Appendix A.2 we show that with full insurance against household composition, total

consumption is given by

log cat
(
st; g, k

)
= log cat

(
st; 1, 0

)
+D (g, k) ,

where log cat (s
t; 1, 0), consumption for a single-adult household, is given by equation (7), and

D(g, k) is given by

D (g, k) ≡
1

γ
log g −

(
1− γ

γ

)
log e (g, k) . (12)

From this expression it is clear that if γ = 1 or e(g, k) = g, then households are allocated

consumption exactly in proportion to the number of adults g, so there are no transfers

between households of different size. Suppose there are economies of scale from additional

adults (so that e(g, 0) < g for g > 1). Then larger households are allocated less consumption

per adult than smaller households if and only if γ > 1. On the one hand, economies of

scale make it inexpensive to increase effective consumption c/e(g, k) for large households —

in the limit γ → 0 this effect makes it efficient to allocate all consumption to the largest

households. On the other hand, for γ > 0, economies of scale mean that for the same level

of consumption per adult, larger households enjoy a lower marginal utility of consumption.

If γ > 1 this second effect dominates.

With prior knowledge of the appropriate equivalence scale e (g, k) and the risk aversion

parameter γ, one could purge variation in household size from the data by applying eq.

(12) directly. Instead we choose to be agnostic ex ante about the function e (g, k) and

simply regress log household consumption on a full set of composition dummies. In the same

consumption regression, we also strip out the age/time dummies Ca
t (by including a quartic

polynomial in age and a full set of year dummies), and run similar regressions (minus the

composition dummies, as dictated by the theory) for individual wages and hours.21

21Note that the polynomial in age also eliminates life-cycle effects in wages, hours, and consumption that
we do not model.
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Measurement error We assume that consumption, earnings, and hours worked are

measured with error and that this error is classical, i.e., i.i.d. over time and across agents.

The log of the observed value for variable xt is then log x̂t = log xt+µx
t , where measurement

error µx
t has mean zero and variance vµx. While we directly observe consumption, hours,

and earnings, we compute hourly wages as earnings divided by hours. Hence measurement

error in hourly wages reflects errors in both earnings and hours.

Augmented allocations Augmented log allocations at time t are therefore given by

log ŵt = αt + κt + θt + µy
t − µh

t (13)

log ĉt = − (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + µc

t (14)

log ĥt = −ϕ̂+

(
1− γ

σ̂ + γ

)
αt +

1

σ̂
εt + µh

t , (15)

where, recall, ϕ̂ denotes the rescaled preference weight.

3.2 Interpreting cross-sectional variances and covariances

With these allocations in hand, we can express in closed form cross-sectional moments of

the joint equilibrium distribution of wages, hours, and consumption. These theoretical mo-

ments represent an attractive feature of our framework, since they allow us to transparently

interpret the dynamics of their empirical counterparts over the life cycle and over time.

We will focus on variances and covariances across all agents of age a at date t. These

moments reflect dispersion both within and between islands. An important theoretical prop-

erty of our framework (see Section 4.1) is that the information contained in these aggregate

cross-sectional (co-)variances of wages, hours, and consumption is sufficient to identify all

model parameters and to quantify risk sharing.22

We start from the moments in levels, which we call the “macro moments” and then move

to those in differences, which we will refer to as the “micro moments.”

Macro moments Let varat (α) denote the within-cohort variance of cumulated permanent

uninsurable shocks (up until) period t for agents of age a:

varat (α) = vα0,t−a +

a−1∑

j=0

vω,t−j . (16)

22Note also that we do not need any data on wealth when estimating the model. Longitudinal wealth data
could shed further light on how households smooth wage fluctuations (see, e.g., Krueger and Perri, 2010).
In particular, wealth dynamics might help with the difficult task of distinguishing insurable shocks from
predictable changes in wages.
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Similarly, let varat (ϕ̂) = vϕ̂,t−a denote the cohort (t − a)-specific variance of the rescaled

preference weights, and let varat (ε) = vκ0,t−a +
∑a−1

j=0 vη,t−j + vθt be the variance of the

insurable component of the wage for cohorts of age a in year t.

The macro moments for wages and hours for age group a at date t are, respectively,

varat (log ŵ) = varat (α) + varat (ε) + vµy + vµh (17)

varat

(
log ĥ

)
= varat (ϕ̂) +

(
1− γ

σ̂ + γ

)2

varat (α) +
1

σ̂2
varat (ε) + vµh (18)

covat

(
log ŵ, log ĥ

)
=

(
1− γ

σ̂ + γ

)
varat (α) +

1

σ̂
varat (ε)− vµh. (19)

The variance of measured wages is the sum of variances of the orthogonal productivity

components, plus the variances of measurement error in earnings and hours. The variance

of hours has four components. First, the more heterogeneity in the taste for leisure ϕ, the

larger is the cross-sectional dispersion in hours. Second, the variance of the uninsurable shock

translates into hours dispersion proportionately to 1 − γ. As γ → 1 (the log-consumption

case), uninsurable shocks have no effect on hours. Third, the variance of the insurable shocks

increases hours dispersion in proportion to the (squared) tax-modified Frisch elasticity. Fi-

nally, measurement error in hours contributes positively to observed dispersion.

The covariance between wages and hours has three components. The effect of uninsurable

wage shocks on this covariance depends on the value for γ. If γ > 1, then uninsurable shocks

decrease the wage-hours covariance, since strong income effects induce low wage (uninsured)

workers to work longer hours. Insurable shocks, by contrast, make hours and wages move

together. Measurement error in hours reduces the observed covariance between hours and

wages (earnings divided by hours).

We now turn to the moments involving consumption:

varat (log ĉ) = (1− τ)2 varat (ϕ̂) + (1− τ)2
(
1 + σ̂

σ̂ + γ

)2

varat (α) + vµc (20)

covat

(
log ĥ, log ĉ

)
= (1− τ) varat (ϕ̂) +

(1− τ) (1 + σ̂) (1− γ)

(σ̂ + γ)2
varat (α) (21)

covat (log ŵ, log ĉ) = (1− τ)

(
1 + σ̂

σ̂ + γ

)
varat (α). (22)

The variance of consumption is increasing in the variance of uninsurable preference het-

erogeneity and uninsurable wage shocks, as expected. Progressive taxation (τ > 0) reduces

the variance of consumption for a given varat (α). The role of labor supply depends on the
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value for γ: for γ > 1 a lower σ (higher Frisch) reduces consumption dispersion because

labor supply offsets uninsurable wage shocks and dampens their impact on earnings.

The covariance between hours and consumption is increasing in the degree of preference

heterogeneity, since individuals with higher ϕ work relatively few hours and thus earn and

consume relatively less. The effect of uninsurable wage risk depends on the value of γ: when

γ > 1, a positive uninsurable shock reduces hours worked but increases consumption.

The covariance between consumption and wages depends only on uninsurable wage

shocks: fluctuations in uninsurable productivity affect both wages and consumption in the

same direction. As expected, progressive taxation reduces this covariance.23

Dispersion over the life cycle Let ∆varat (log x̂) = varat (log x̂)− vara−1
t−1 (log x̂) be the

within-cohort change (i.e., between age a−1 in year t−1 and age a in year t) in the variance

of log x̂. The model has sharp predictions for the life-cycle evolution of dispersion:

∆varat (log ŵ) = vωt + vηt +∆vθt (23)

∆varat

(
log ĥ

)
=

(
1− γ

σ̂ + γ

)2

vωt +
1

σ̂2
(vηt +∆vθt) (24)

∆covat

(
log ŵ, log ĥ

)
=

(
1− γ

σ̂ + γ

)
vωt +

1

σ̂
(vηt +∆vθt) (25)

∆varat (log ĉ) = (1− τ)2
(
1 + σ̂

σ̂ + γ

)2

vωt (26)

∆covat

(
log ĥ, log ĉ

)
= (1− τ)

(1− γ) (1 + σ̂)

(σ̂ + γ)2
vωt (27)

∆covat (log ŵ, log ĉ) = (1− τ)

(
1 + σ̂

σ̂ + γ

)
vωt. (28)

None of these moments involve measurement error, reflecting our assumption that the

variance of measurement error is independent of age and time. Moreover, because all shocks

in our economy are either permanent or i.i.d., all of these moments are independent of age.

The rise in wage inequality over the life cycle is determined by the variance of the inno-

vations to the permanent insurable and uninsurable components, and by the change in the

variance of the transitory insurable component. Wage dispersion will increase over the life

23Since we have filtered out differences in mean values for allocations across age groups, the expressions
for dispersion in the entire cross section are identical to those above, but without the age a superscripts.
This follows from the variance decomposition vart (x) = E [varat (x)] + vart [E (x|a)], where the second term
is zero if we abstract from the terms Ca

t and Ha
t in the allocations. Thus, for example, vart (log ŵ) =

vart(α) + vart(ε) + vµy + vµh, where vart(α) = (1− δ)
∑

∞

a=0 δ
avarat (α) is the unconditional cross-sectional

variance of the uninsurable component of log wages, and vart(ε) is the corresponding variance for the
insurable component of wages.
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cycle as permanent shocks cumulate. The model suggests that the variance of hours should

be increasing over the life cycle for the same reasons as wages, though with different weights

on the insurable and uninsurable permanent variances. In the log-consumption utility case

(γ = 1), only the former matters for hours.

Whether the covariance between wages and hours rises or falls over the life cycle depends

on risk aversion and the relative size of permanent and transitory innovations. When γ > 1,

the cumulation of permanent uninsurable shocks pushes the covariance down as individuals

age, while the cumulation of permanent insurable shocks pulls the covariance up.

The change in the variance of consumption over the life cycle is determined by the variance

of uninsurable productivity shocks. The uninsurable-wage-shock coefficient for consumption

is exactly one when τ = 0 and either γ = 1 or σ → ∞.

When γ > 1, hours move up in response to a negative uninsurable wage shock, while con-

sumption moves down, driving the consumption-hours covariance down over the life cycle as

varat (α) rises with age. Finally, the model predicts that the covariance between consumption

and wages will increase over the life cycle, in proportion to vωt.

Micro moments Micro moments are computed as variances and covariances of individual

changes in log wages and log hours between t − 1 and t.24 Let ∆ log x̂t ≡ log x̂t − log x̂t−1

denote the observed individual growth rate for variable x̂, and let varat (∆ log x̂) be its cross-

sectional variance, for the set of individuals of age a at date t for whom variable x̂ is observed

at both t− 1 and t :

varat (∆ log ŵ) = vωt + vηt + vθt + vθ,t−1 + 2vµy + 2vµh (29)

varat

(
∆ log ĥ

)
=

(
1− γ

σ̂ + γ

)2

vωt +
1

σ̂2
(vηt + vθt + vθ,t−1) + 2vµh (30)

covat

(
∆ log ŵ,∆ log ĥ

)
=

(
1− γ

σ̂ + γ

)
vωt +

1

σ̂
(vηt + vθt + vθ,t−1)− 2vµh (31)

Again, the model implies that the variances and covariances of individual growth rates

should be invariant to age and thus common across cohorts. Similar expressions obtain for

second differences in wages and hours. For example, the variance of wage growth over a

24Given the specification of the stochastic process for shocks and measurement error, in the model covari-
ances of the individual changes are all zero beyond lag one. Moreover, we omit moments involving changes
in consumption, since we do not use the longitudinal dimension of CEX. The panel aspect of CEX is quite
weak. It consists of two, generally noisy, observations spaced nine months apart. See Davis (2003) for a
discussion.
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two-year horizon is

varat
(
∆2 log ŵ

)
= vωt + vω,t−1 + vηt + vη,t−1 + vθt + vθ,t−2 + 2vµy + 2vµh. (32)

As we shall see, such moments are especially useful for exploiting the PSID data in the years

when the survey was conducted biannually.

Finally, note that all of our cross-sectional moments are the sum of additively sepa-

rable terms capturing the roles of preference heterogeneity, insurable productivity shocks,

uninsurable productivity shocks, and measurement error. This implies that (co-)variance de-

compositions are always unique, in sharp contrast to the existing literature (e.g., Keane and

Wolpin, 1997; Storesletten, Telmer, and Yaron, 2004a; Heathcote, Storesletten, and Violante

2010b), where decompositions must be obtained by simulation, and where the sequence in

which various model ingredients are added or removed typically affects their measured con-

tribution to moments of interest. In Section 5.4 we document our decompositions in detail.

4 Identification, data, and estimation

In this section, we first exploit the closed-form cross-sectional moments to prove identification

of the model parameters. Next, we describe the data used for the structural estimation, and

finally we discuss our estimation method. We estimate all structural parameters except δ and

τ, which are set exogenously. Both macro and micro moments contain valuable information

about parameters, and both are used to identify and estimate the model.

4.1 Identification

Typically, identification in estimated structural equilibrium models is discussed only at an

informal level, because the mapping from parameters to equilibrium moments can at most be

weakly illuminated by numerical experimentation. In contrast, our closed-form expressions

for equilibrium allocations deliver explicit analytical links between structural parameters and

equilibrium moments, enabling us to prove identification formally and lending transparency

to the empirical analysis. This is one of the key payoffs from the tractability of our framework.

The conditions for identification depend on data availability. We therefore consider an

array of different scenarios. Our baseline scenario (Proposition 2 below) is that one has

access to an unbalanced panel on wages and hours (e.g., the PSID) and a repeated cross
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section on wages, hours, and consumption (e.g., the CEX). Next, we consider several variants

encompassing alternative data structures.

Proposition 2 [identification] With an unbalanced panel on wages and hours and a

repeated cross section on consumption, wages, and hours from t = 1, ..., T , the parame-

ters {σ, γ, vµh, vµy, vµc} as well as the sequences {vϕ̂t, vα0t}
T
t=1 , {vκ0t, vθt}

T−1
t=1 , {vωt}

T
t=2 and

{vηt}
T−1
t=2 are identified. The sums vηT + vθT and vκ0T + vθT are also identified.

Proof. See Appendix A.3.

We now consider two alternative data structures that reflect additional limitations of

available survey data for the United States. The first constraint is that consumption data

in the CEX are available only from 1980, whereas the PSID starts in 1967. The second

limitation is that, starting in 1996, the PSID becomes biannual. Since we estimate the

model by combining the PSID and the CEX, these next two corollaries are important for us.

Corollary 2.1 [limited consumption data] Suppose available data comprise an

unbalanced panel on wages and hours from t = 1, ..., T and a repeated cross section on

consumption, wages, and hours for at least two years t̂ and t̂ + 1, where 1 ≤ t̂ < T . Then,

parameter identification is exactly as in Proposition 2.

Corollary 2.2 [biannual panel data] Suppose available data comprise an unbal-

anced panel on wages and hours and a repeated cross section on wages, hours, and consump-

tion, where the cross-sectional data on consumption are annual for all years t = 1, ..., T, while

the panel data on wages and hours are annual only until year t̂ and biannual thereafter, i.e.,

data are available for the years t = 1, 2, ..., t̂ and t = t̂+2, t̂+4, ..., T − 2, T . Then, one can

identify {σ, γ, vµh, vµy, vµc}, the sequences {vϕ̂t, vα0t}
T
t=1 , {vωt}

T
t=2 , {vθt, vκ0t}

t̂
t=1, {vηt}

t̂
t=2,

and {vθt, vκ0t, vη,t−1 + vηt} for the years t = t̂ + 2, t̂ + 4, ..., T − 2, as well as the sums

{vη,T−1 + vη,T + vθ,T} and {vκ0,T + vθ,T}.

These two corollaries are proved in Appendix A.3. It is also straightforward to prove

that, up to the composition of insurable shocks (i.e., the split between vθt, vηt, and vκ0t),

the model is also identified with only cross-sectional data on consumption, hours, and wages

–for example, with data from the CEX alone.25

25To see this, note that Step A of the proof of Proposition 2 identifies σ, γ, {vωt}
T

t=2 , and {vηt +∆vθt}
T

t=2
.

Following Step C of the same proof, one identifies {vϕ̂t, vα0t}
T

t=1
and {vκ0t + vθt}

T
t=1 . Measurement error

{vµy, vµh, vµc} is identified following Step D.
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Polynomial model for the variances Small sample sizes and data quality issues might

preclude precise point estimates of year-specific shock variances. One way to reduce the

information needed in estimation is to restrict the time series for the variances to follow time

polynomials. In the baseline estimation, we follow this approach and model the time paths

for the variances of insurable and uninsurable innovations {vηt, vωt} as fourth-order time

polynomials. This choice allows us to estimate a more parsimonious model (the number of

parameters is reduced from 232 to 164) that can still capture the low-frequency movements in

insurable and uninsurable wage risk in which we are interested.26 Moreover, this restriction

improves overall identification, as we demonstrate in the following corollary to Proposition

2 (proved in Appendix A.3).

Corollary 2.3 [time-polynomials for (vηt, vωt)] Suppose the sequences {vηt, vωt}
T
t=1

are modelled as time-polynomials of order T − 3 or lower. Then, with an unbalanced

panel on wages and hours, and a repeated cross section on consumption, wages, and hours

from t = 1, ..., T , the parameters {σ, γ, vµh, vµy, vµc} as well as all the entire sequences

{vϕ̂t, vα0t, vκ0t, vθt, vωt, vηt}
T
t=1 are identified.

Analogous modifications on identification can be easily shown for the alternative data

structures corresponding to Corollaries 2.1 and 2.2.

4.1.1 Identification via labor supply

It is well understood in the literature that consumption data can be used to differentiate

between insurable and uninsurable shocks (see, e.g., Attanasio and Davis, 1996; Blundell

and Preston, 1998; Guvenen and Smith, 2010). Proposition 2 and its corollaries expand this

earlier research by introducing data on hours worked alongside consumption to obtain sharper

identification. We now prove that, under a weak additional restriction on measurement error,

the whole model can be identified without using any consumption data.

Proposition 3 [identification with no consumption data] With an unbalanced panel

on wages and hours from t = 1, ..., T , and an external estimate of measurement error in

earnings vµy, all the parameters listed in Proposition 2 are identified.

26We chose to restrict only vηt and vωt to follow time polynomials because (as we explain in Section 5)
those variances, when unconstrained, were by far the most volatile and least precisely estimated. In some
years, point estimates hit the zero lower bound, suggesting a practical identification problem.
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Proof. See Technical Appendix C.1.27

Why are data on labor supply informative about risk sharing and preference parameters?

At a basic level, the logic is that theory has sharply different implications for the response

of hours to uninsurable versus insurable shocks, just as for consumption. Households adjust

hours worked more strongly in response to latter type of wage fluctuations, because of

the absence of offsetting wealth effects. Moreover, the magnitudes of these responses are

mediated by preference parameters.

4.2 Data

Our data are drawn from two surveys, the Michigan Panel Study of Income Dynamics

(PSID), and the Consumer Expenditure Survey (CEX). We use PSID data for interview

years 1968-2007 (which refer to calendar years 1967-2006). After the 1997 interview, the

PSID becomes biannual, so we only have data for survey years 1968-1997, 1999, 2001, 2003,

2005, and 2007. We use CEX data from the quarterly Interview Surveys. Consistent and

continuous data over time are available annually since 1980, hence we restrict attention to

the 1980-2006 surveys.28

Since we jointly use both PSID and CEX data, we apply the same sample selection criteria

to both datasets. Namely, we exclude badly incomplete or highly implausible observations.29

We use an imputation procedure to adjust for top-coding based on the Pareto distribution.

We then select households in which the male is between the ages of 25 and 59, and works

at least 260 hours in the year.30 In both datasets, the hourly wage is computed as annual

pre-tax labor earnings divided by annual hours worked.31 To avoid severe selection issues,

27Proposition 3 has two immediate implications. First, with an unbalanced panel, only a very short
longitudinal dimension is required: all parameters are identified with a three-year panel. Second, the model
could alternatively be estimated with longitudinal data on wages and hours for a single cohort. Therefore,
besides the PSID, the model can be estimated on the SIPP or the NLSY. With a two-year panel (for example,
the rotating panel of the CPS) all parameters are identified, except for vηt.

28In the PSID, we exclude all PSID oversamples (SEO, Latino) so we do not need sample weights, while
for the CEX computations use sample weights throughout.

29We drop records if 1) there is no information on age for either the head or the spouse, 2) if either the
head or spouse has positive labor income but zero annual hours, and 3) if either the head or spouse has
an hourly wage less than half of the corresponding federal minimum wage in that year. In the CEX, we
drop households that report implausibly low quarterly consumption expenditures (less than $100, in 2000
dollars). In order to reduce measurement error, we also exclude CEX households flagged as “incomplete
income reporters.”

30The resulting unbalanced panel from the PSID comprises 2,930 individuals and 93,153 person-year
observations. The resulting repeated cross sections from the CEX have a total of 87,966 household-year
observations (on average, 3,258 households per year).

31Labor earnings are defined in both surveys as the sum of all income from wages, salaries, commissions,

26



we use wages and hours for males only. Our measure of household consumption includes

expenditures on nondurables, services, small durables, and an estimate of the service flow

from vehicles and housing. All nominal variables are deflated using the Consumer Price

Index (CPI-U). Our PSID and CEX samples are updated versions of those constructed by

Heathcote, Perri, and Violante (2010). We refer to that paper for a detailed description of

these two surveys, the sample selection, and exact variable definitions.

As discussed in Section 3.1, we regress individual log wages, individual log hours, and

household log consumption on year dummies, a quartic in age, and (for consumption) house-

hold composition dummies.

We then use the residuals from these regressions to construct variances and covariances

in levels and differences for all available age/year cells constructed by grouping observations

in any given year into 31 five-year overlapping age classes (27-57).32 From the PSID data we

construct (i) 1,085 age/year covariances corresponding to 31 age groups over 35 years (1967-

1996, 1998, 2000, 2002, 2004, 2006) for each of the three moments in levels involving wages

and hours; (ii) 899 age/year covariances corresponding to 31 age groups over 29 years for each

of the three moments in first differences; and (iii) 1,203 age/year covariances corresponding

to 31 age groups over 33 years for each of the three moments in second differences. From

the CEX data, we construct 837 age/year covariances corresponding to 31 age groups over

27 years (1980-2006) for each of the three moments in levels involving consumption.

4.3 Estimation method

The structural estimation of the model uses the minimum distance estimator introduced by

Chamberlain (1984), which minimizes a weighted squared sum of the differences between

each moment in the model and its data counterpart. Let m (Λ) denote the (J × 1) vector

of theoretical covariances, and Λ denote the (N × 1) vector of parameter values to estimate.

Correspondingly, we define m̂ as the vector of empirical covariances. The estimator solves

the following minimization problem:

min
Λ

[m̂−m (Λ)]′ W [m̂−m (Λ)] , (33)

bonuses, and overtime, and the labor component of self-employment income.
32For example, the variance of log wages for the youngest age group (age class 27) at date t is constructed

with all wage observations for individuals aged 25-29 at date t, the variance of log wages for the next age
group (age class 28) at date t is constructed with all wage observations for individuals aged 26-30 at date t,
and similarly for all other age groups until the oldest one (age class 57). Since the number of observations
in many one-year age cells is very small, this procedure reduces sampling variation. We apply the same
procedure to construct the model analogue of these moments.
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where W is a (J × J) weighting matrix. Standard asymptotic theory implies that the

estimator Λ̂ is consistent and asymptotically Normal. Due to the small sample size, we

make two choices: (i) we use an identity matrix for W;33 (ii) we compute 90–10 confidence

intervals through a block-bootstrap procedure based on 500 replications.34

The discussion of identification in Section 4.1 indicates that, absent additional assump-

tions, one cannot identify some of the time-varying parameters in the missing PSID survey

years. We describe the minor technical identifying assumptions needed to overcome this

issue in Appendix A.4. Moreover, we assume that prior to 1967 the variances of all shocks

were equal, in each year, to their respective values in 1967.35 Overall, the estimation uses

J = 11, 532 moment conditions for N = 164 parameters.

Parameters set outside the model We set δ = 0.996 to match the annualized probabil-

ity of surviving from age 25 to age 60 for US men.36 To estimate the progressivity parameter

τ , for each household in our PSID sample we compute after-tax income as income minus all

federal and state taxes (calculated using the NBER’s TAXSIM program) plus social security

benefits. We exclude state-contingent government transfers in the form of cash (e.g., UI

benefits and TANF) or kind (e.g., food stamps and Medicaid) since, as discussed earlier, this

type of social assistance is subsumed in our estimate of insurance with respect to ε shocks.37

From eq. (4), a consistent estimate of 1 − τ can be obtained by regressing log household

after-tax income on log household pre-tax income, including a constant in the regression.

The ordinary least squares estimate of this coefficient implies τ = 0.185 (s.e. = 0.001). The

associated R2 measure of fit is 0.92, which demonstrates that our functional form provides

a good approximation to the actual US tax system.

33The bulk of the literature follows this strategy, in light of the Monte Carlo simulations of Altonji and
Segal (1996) who argue that in common applications there is a substantial small sample bias when using the
optimal weighting matrix characterized by Chamberlain (1984).

34Bootstrap samples are drawn at the household level with each sample containing the same number of
observations as the original sample. The implied confidence intervals thus account for arbitrary serial correla-
tion, heteroscedasticity, and estimation error induced by the first-stage regression of individual observations
on age, time, and household type.

35Alternatively, we could have treated the cumulative variances of the insurable and uninsurable com-
ponents for the cohorts alive in 1967, i.e., {vκa,1967, vαa,1967}

57

a=27
, as parameters to be estimated. When

pursuing this alternative estimation strategy, we found the results to be virtually identical to those under
the baseline “steady-state” identification scheme.

36The survival rate δ does not appear in any of the age/year moments we use to estimate the model, and
hence its calibration has no bearing on the parameter estimates. We use δ only to construct the aggregate
cross-sectional variances and covariances plotted to measure the fit of the model against the data. The fit is
extremely robust to varying δ within a plausible range.

37Since state income taxes from TAXSIM are only available from 1978, we exclude years 1967-1977 in this
calculation. See Appendix B in Heathcote, Perri, and Violante (2010) for details.
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Table 1: Baseline Parameter Estimates

Preference Elasticities Life-Cycle Shocks

σ γ vω vη vθ
2.165 1.713 0.0056 0.0044 0.043
(0.173) (0.054) (0.0008) (0.0012) (0.005)

Initial Heterogeneity Measurement Error

vα0 vκ0 vϕ̂ vµy vµh vµc
0.102 0.047 0.054 0.000 0.036 0.041
(0.030) (0.023) (0.016) (0.000) (0.006) (0.002)

Notes: Bars denote sample averages. Bootstrapped standard errors based on 500 replica-
tions are shown in parentheses.

5 Results

Table 1 reports parameter estimates. Our estimates for the two preference elasticity param-

eters are γ = 1.71 and σ = 2.16. In both cases the confidence intervals are narrow. Given

our assumed value for the tax progressivity parameter τ, the implied tax-modified Frisch

elasticity with respect to pre-tax wages is 1/σ̂ = (1 − τ)/(σ + τ) = 0.35, a value that is

broadly consistent with the microeconomic evidence (see, e.g., Keane, 2011).

The average estimated values for the variances of uninsurable and insurable permanent

wage shocks (vω and vη) and corresponding cohort effects (vα0 and vκ0) indicate that almost

45% of permanent life-cycle wage innovations are insurable, while around 30% of initial wage

variation at labor market entry is insurable.38 The estimated average transitory wage vari-

ance is vθ = 0.043, an order of magnitude larger than the variance of permanent shocks. The

entire time series for the variances are reported in Table E in the Technical Appendix. Our

estimates for the variances of measurement error in log hours worked, individual earnings,

and household consumption are, respectively, 0.036, 0, and 0.041.39

38The total variance of permanent wage innovations is 0.01, in line with existing estimates. For example,
Low, Meghir, and Pistaferri (2010) estimate a variance of permanent wage shocks of 0.011.

39The estimate of zero measurement error in earnings might seem surprising. However, Gottschalk and
Huynh (2010) find that the cross-sectional variance of true earnings is greater than the variance of measured
earnings in survey data. They argue that this reflects a non-classical structure for measurement error in
earnings.
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5.1 Life-cycle fit

Figures 1 and 2 compare the evolution of model and data along the life-cycle dimension

and show that the model-implied moments align closely with their empirical counterparts

from the PSID and the CEX. In particular, the model-implied moments almost always lie

within the 90-10 confidence intervals around the empirical moments. With the help of these

figures, we offer some economic intuition relating the life-cycle profiles for inequality to the

parameter estimates described above. We then demonstrate that each feature of the baseline

model plays an important role in accounting for the empirical moments by estimating a set

of restricted models.

Understanding parameter estimates In both US and model-simulated data, the vari-

ance of log wages increases by around 37 log points, approximately linearly, between ages 27

and 57. In contrast, the variance of log consumption grows much less, by about 10 log points

over the life cycle. The much steeper life-cycle increase in wage dispersion relative to con-

sumption dispersion explains why almost half of permanent shocks to wages are estimated

to be insurable.

The fact that the empirical profile for the variance of log hours is fairly flat, notwith-

standing the fact that dispersion in wages increases sharply as permanent shocks cumulate,

points to a relatively low Frisch elasticity of labor supply. However, we show below that the

model fits poorly if we impose exogenously a zero Frisch elasticity.

The point estimate for γ exceeds one because the covariance between wages and hours is

negative, indicating significant wealth effects from uninsurable shocks to wages (recall that

insurable wage shocks push this covariance up).40 The framework allows for one alterna-

tive way to generate a negative wage-hours covariance, namely measurement error in hours.

However, the estimation procedure does not attribute the low covariance entirely to mea-

surement error because this would translate into an excessively high variance for the growth

of individual hours.41

40In a similar spirit, Chetty (2006) argues that existing empirical evidence on the response of hours to
permanent shocks to wages can be used to bound estimates for risk aversion. An advantage of our fully
structural approach is that we can identify γ in an environment with a mix of uninsurable and insurable
permanent wage shocks.

41Figure 1 indicates that the estimated model exaggerates the increase in the correlation between wages
and hours observed over the life cycle. A larger value for γ would improve the model’s fit in this dimension,
by amplifying the offsetting effect on hours or permanent uninsurable wage shocks. However, a larger value
for γ would also steepen the age decline in the theoretical correlation between hours and consumption. See
equations (19) and (21). Thus the estimated value for γ reflects a compromise in an attempt to reconcile
various conflicting moments.
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Table 2: Parameter Estimates for Alternative Models

Baseline (2) (3) (4) (5) (6)

σ 2.165 2.682 2.251 ∞∗ 1.642 1.637
γ 1.713 1.483 1.849 1.713∗ 1.705 2.108

vµh 0.036 0.037 0.036 0.033 0.039 0.037
vµy 0.000 0.000 0.000 0.000 0.000 0∗

vµc 0.041 0.040 0.038 0.016 0.084 0.041
vϕ̂ 0.054 0.050 0.055 0.058 0∗ 0.036
vα0 0.102 0.156 0.070 0.086 0.089 0.085
vω 0.0056 0∗ 0.0093 0.0059 0.0064 0.0063
vκ0 0.047 0.014 0.082 0.051 0.065 0.067
vη 0.0044 0.0081 0∗ 0.0056 0.0035 0.0031
vθ 0.043 0.043 0.045 0.043 0.039 0.042

1/σ̂ 0.347 0.284 0.334 0∗ 0.446 0.447

SSR 10.204 11.213 11.314 13.012 14.114 –

Notes: Externally set values are followed by an asterisk. The baseline estimates are reproduced

from Table 1. Other columns: (2) complete markets for all shocks (vωt = 0), (3) no private insur-

ance against permanent shocks (vηt = 0), (4) inelastic labor supply (σ → ∞), (5) no preference

heterogeneity (vϕt = 0), and (6) baseline model without using CEX consumption data (Section

5.5). Values for 1/σ̂ are implied by the other parameter estimates. The sum of squared residuals

SSR is reported only where comparable with the baseline.

Figure 2 shows that the model also accounts well for the life-cycle moments in first and

second differences. For example, the top left and bottom left panels plot the cross-sectional

variances of annual and bi-annual log wage growth. The first differences apply to the period

1967-1996, while the second differences refer to 1967-2006. How does the model discriminate

between transitory insurable shocks and measurement error? Equations (29)-(32) illustrate

that if moments in first (and second) differences were driven primarily by measurement error

in hours, then the correlation between hours and wage growth would be close to minus one.

A substantial amount of true transitory wage variation is needed to raise this correlation

to the level observed in the data. Finally, note that the variance of biannual wage and

hours growth (the bottom panels) is not much larger than the variance of annual growth,

which helps explain why the estimated variances for permanent shocks are small relative to

transitory shocks.

Alternative models: What goes wrong? To better understand why each model ele-

ment is needed to account for the observed cross-sectional moments, we now discuss a range

of experiments in which we shut down one model element at a time, and re-estimate the
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model. See Table 2 for the parameter estimates of these alternative models.

We first consider two alternative insurance market structures. In the first, we assume

perfect insurance against permanent life-cycle shocks, by imposing vωt = 0. In the second, we

make the opposite assumption, namely that there is no explicit insurance against permanent

life-cycle shocks, by imposing the restriction vηt = 0. This economy captures the spirit of

the permanent income hypothesis (PIH), according to which transitory shocks are largely

insurable, while permanent shocks are uninsurable.

The estimated “complete markets” model (vωt = 0) features almost twice as large an

average variance for permanent insurable shocks vη relative to the baseline model. Absent

changes in other parameter values, this would imply too much dispersion in hours worked

and too little dispersion in consumption: thus, the estimation also delivers a larger estimate

for σ (a lower Frisch) and a higher estimate for vα0 (more uninsurable wage dispersion at

labor market entry). However, absent permanent uninsurable shocks, the model has no

way to generate the observed rise in consumption dispersion over the life-cycle. Another

indication that this model exaggerates insurance against life-cycle shocks is that it generates

much too large an increase in the correlation between wages and hours over the life cycle.

The estimated PIH model (vηt = 0) delivers similar parameter estimates to the baseline

model, with the exception that the average variance of permanent uninsurable shocks vω rises

from 0.0056 to 0.0093. Perhaps surprisingly, the estimated model replicates fairly closely the

empirical life-cycle profile for the variance of log consumption, because uninsurable wage

shocks are partially smoothed via labor supply and progressive taxation. However, the

model now generates a counterfactual decline over the life cycle in the correlation between

wages and hours worked. Recall that permanent uninsurable shocks drive this correlation

down, while permanent insurable shocks (shut off in this experiment) drive the correlation

up. Consequently, the estimated model also delivers a life-cycle increase in the variance of

earnings that is much too small.

We next experiment with shutting off flexible labor supply by setting σ = ∞ in the base-

line model.42 With inelastic labor supply, measurement error is the only source of variance in

the growth of individual hours. However, with a zero Frisch elasticity, measurement error in

hours implies a negative correlation between wages and hours worked, while this correlation

42Technically, we set σ = 500. With σ large but finite, the model can still generate dispersion in hours
through preference heterogeneity. Given a Frisch elasticity near zero, our identification strategy for γ (based
on cross-sectional moments involving hours) fails. Thus we set γ equal to its value in the baseline model.
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is close to zero in the data. The estimation compromises, delivering too little variation over

time in individual hours and a counterfactually negative wage-hours correlation. In addition,

the model with inelastic hours generates too much comovement between hours worked and

consumption because it rules out income effects as a force to offset preference heterogeneity.

We conclude that allowing for elastic labor supply is essential in accounting for all moments

involving hours worked.

In our last experiment, we eliminate preference heterogeneity by imposing vϕ̂t = 0. In

our baseline model, preference heterogeneity is required to replicate the positive empiri-

cal correlation between hours worked and consumption. Absent preference variation, the

model generates a counterfactual negative correlation since, with γ > 1, individuals with

a higher uninsurable wage component enjoy more consumption but work fewer hours – see

equations (7) and (8). Preference heterogeneity also plays an important role in generating

cross-sectional dispersion in hours worked and consumption, and when it is shut down the

estimation looks for alternative ways to replicate these moments. In particular, it assigns

larger values for the variance of measurement error in consumption and delivers a higher

Frisch elasticity.

We conclude this section by highlighting two key messages from this exploration of alter-

native models. First, the overall model fit worsens dramatically in each restricted version of

the baseline model we estimate (see the sum of squared residuals in Table 2), indicating that

each model element plays an important quantitative role in accounting for observed dynamics

of inequality. In particular, the data – and especially the moments involving hours worked –

speak strongly to the existence of risk-sharing mechanisms that allow households to insure

a fraction (but only a fraction) of permanent idiosyncratic fluctuations in wages. They also

speak strongly to the existence of two fundamental drivers of dispersion in hours worked: a

positive elasticity in response to wage fluctuations and a second source of dispersion in hours

that is unrelated to wages.

Second, it is important to estimate the scope for risk sharing and preference parameters

jointly. The logic is simply that both matter for the dynamics of consumption and labor

supply. If we use more restricted models for risk sharing (by imposing too much or too little

insurance), the estimation contorts estimates for preference elasticities or for preference het-

erogeneity in order to try to match the same moments involving consumption and hours. If

we restrict the model for preferences (by imposing inelastic hours or an absence of preference

heterogeneity), the model delivers the wrong estimate for the fraction of wage risk that is
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insurable.

5.2 Insurance and inequality over the life cycle

We now turn to the first of our motivating questions: How effectively can households smooth

idiosyncratic wage fluctuations via insurance arrangements, labor supply adjustments, and

progressive taxation?

Pass-through coefficients There are three reasons for incomplete pass-through from

changes in wages to changes in consumption. First, shocks to wages that are insurable will

not be reflected in changes in consumption. Second, labor supply decisions determine how

uninsurable wage shocks transmit to earnings. Third, the progressive tax system dampens

the response of consumption to fluctuations in earnings.

Let φw,c
t denote the pass-through coefficient from wages to consumption, defined as the

OLS coefficient from a panel regression of model-simulated changes in log consumption

between t − 1 and t on permanent (uninsurable or insurable) changes in log individual

wages.43 We focus here on permanent shocks, because transitory shocks are fully insurable

in our framework. The elasticity of consumption with respect to an uninsurable permanent

innovation ωt is (1 + σ̂) / (σ̂ + γ) · (1− τ) (see eq. 7), while consumption does not respond

to permanent insurable innovations ηt. Thus φ
w,c
t is given by

φw,c
t︸︷︷︸

0.386

=
vωt

vωt + vηt︸ ︷︷ ︸
0.560

·
1 + σ̂

σ̂ + γ︸ ︷︷ ︸
0.845

· (1− τ)︸ ︷︷ ︸
0.815

. (34)

Plugging in the estimated values for γ, σ, vω, and vη from Table 1 along with τ = 0.185

gives an average pass-through coefficient of φ̄w,c = 0.386. Thus, on average, less than 40%

of permanent wage shocks transmit to consumption.

The roles of explicit insurance, labor supply, and progressive taxation in delivering con-

sumption smoothing against permanent wage fluctuations are captured, respectively, by the

three terms in the expression for φw,c
t . Evaluated at the sample-average parameter estimates,

44% of permanent wage shocks are explicitly insured. Recall that we have remained agnostic

on the sources of this insurance: state-contingent private or public transfers, spousal labor

supply, and perfect smoothing of forecastable wage changes are among the most plausible

43According to the model of the household described in Section 3.1, the household composition dummy
D(g, k) drops out when looking at the growth rate of log consumption. This implies that φw,c

t can be
interpreted either as measuring pass-through to raw household consumption, or as pass-through to equivalized
consumption.
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candidates. Of the non-insured component of wages, 15.5% of fluctuations are smoothed

through individual labor supply, reflecting the fact that our estimate for γ is larger than one

(see eq. 8). Of the component transmitted to earnings, 18.5% of fluctuations are smoothed

through progressive taxation. We conclude that all three channels play important roles in

mediating the response of consumption to permanent wage shocks. Explicit insurance is the

most important of these channels, followed by progressive taxation.44

While the primitive shocks in our model are shocks to wages, we can also compute a

pass-through coefficient from pre-tax individual earnings to consumption:

φy,c
t =

vωt

vωt +
(
σ̂+γ
σ̂

)2
vηt

· (1− τ) (35)

which implies an average value of φ̄y,c = 0.272. Blundell, Pistaferri, and Preston (2008, Table

7) estimate a quantitatively similar pass-through coefficient of 0.225 from permanent shocks

to male earnings to non-durable consumption on US data. They conclude that the bulk

of permanent individual income risk is insurable. Our framework suggests that one has to

be cautious with this interpretation, for two reasons. First, earnings are endogenous in the

model, and the pass-through from the primitive wage shocks to consumption is 42 percent

larger than the one for earnings. Second, because labor supply adjustments tend to amplify

insurable wage shocks and dampen uninsurable wage shocks, pass-through from earnings to

consumption can be low even if the underlying shocks are mostly uninsurable in nature. To

see this, consider the extreme case in which preferences are linear in hours worked (σ = 0)

and taxation is linear (τ = 0). The pass-through coefficient from earnings to consumption

φy,c
t would mistakenly suggest perfect risk-sharing, i.e., limσ→0 φ

y,c
t = 0, irrespective of the

size of vωt and vηt, whereas φ
w,c
t would correctly indicate some degree of transmission of wage

shocks to consumption.45

Growth in life-cycle variances An alternative, and more common, metric for quan-

tifying the extent of smoothing against life-cycle income fluctuations is to compare the

44An alternative way to gauge the roles of these different smoothing mechanisms is to shut them off one at
a time, and then compute by how much the implied pass-through coefficient would increase, holding constant
other parameter values. We implement this by setting, respectively, vη = 0, σ → ∞, and τ = 0, in which
cases φ̄w,c rises from 0.39 to, respectively, 0.69, 0.46, and 0.47. In this second calculation, the ranking of
smoothing channels is thus the same as in the first one.

45We can also define a pass-through coefficient from permanent wage changes to pre-tax earnings:

φw,y
t =

1 + σ̂

σ̂ + γ
·

vωt

vωt + vηt
+

1 + σ̂

σ̂
·

vηt
vωt + vηt

.

In our model, φw,c
t = φw,y

t · φy,c
t if and only if either (i) vηt = 0, (ii) γ = 0, or (iii) σ → ∞.
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within-cohort life-cycle growth in the variances of consumption on the one hand, and wages

or earnings on the other (see, e.g., Blundell and Preston, 1998; Storesletten, Telmer, and

Yaron, 2004a; Huggett, Ventura, and Yaron, 2011). The analytical expressions for these

moments are in equations (23) and (26).

Our framework uncovers a useful relationship between (i) the ratio of life-cycle growth

in the variance of consumption to growth in the variance of wages, and (ii) the pass-through

coefficient described above. Assuming ∆vθt = 0, we obtain

∆varat (log ĉ)

∆varat (log ŵ)
= (1− τ)2

(
1 + σ̂

σ̂ + γ

)2
vωt

vωt + vηt
= (1− τ)

(
1 + σ̂

σ̂ + γ

)
· φω,c

t . (36)

This relation reveals that these two alternative measures of smoothing coincide exactly if

and only if progressive taxation and labor supply are both absent as smoothing mechanisms,

i.e., when either (i) τ = 0 and σ → ∞, or (ii) τ = 0 and γ = 1. In the latter case, even

though labor supply is elastic, it is not used to smooth uninsurable shocks to wages.

If τ > 0 or if γ > 1 (and σ < ∞), then smoothing provided through taxation and/or

labor supply shows up more strongly in the ratio ∆varat (log ĉ) /∆varat (log ŵ) than in the

pass-through coefficient φω,c
t . At our baseline parameter values, the life-cycle increase in the

variance of log consumption is only 25% of the corresponding increase in the variance of log

wages, even though around 40% of permanent wage shocks transmit to consumption.

5.3 Insurance and inequality over time

Insurability over time Table 2 in the Technical Appendix contains the complete set of

year-by-year estimates for all the time-varying parameters of the model. Figure 3 summarizes

what these estimates imply for changes over time in the structure of relative wages. Panel

A shows that the variance of the total uninsurable component (αt) declines slightly in the

1970s and then rises in the remainder of the sample period. This pattern broadly accords

with the fall of the skill premium in the late 1960s to mid-1970s, and the subsequent increase

in the 1980s and beyond. Under this interpretation, “skill-biased demand shifts” represent

an important source of uninsurable wage shocks.46 The total cross-sectional variance of the

permanent insurable component of wages (κt) is generally increasing throughout the first two

decades, but declines somewhat in the 1990s (Panel B). The variance of transitory insurable

46This interpretation is consistent with Attanasio and Davis (1996) and with Heathcote, Storesletten, and
Violante (2010b), who, in the context of an augmented version of the standard incomplete-markets model,
show that skill-biased demand shifts are the main driver of the rise in consumption inequality.
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shocks (θt) plotted in Panel C grows steadily throughout the sample, consistent with Moffitt

and Gottschalk’s (2002) estimates for earnings dynamics.47

Combining these estimates allows us to address the second of our motivating questions:

What fraction of the observed rise in wage dispersion over our sample period was insurable

for US households? Panel D of Figure 3 indicates that in the late 1960s the insurable

component of wages accounted for around one third of the cross-sectional variance of log

wages, while by the early 1980s this fraction was around 50%. Since then, the variances

of the two components of wages have risen at a similar rate, leaving the fraction of wage

fluctuations insured relatively stable.

Finally, note that the “cohort” components in Panels A, B, and D are rather steady

over time, indicating that the bulk of the dynamics in cross-sectional wage dispersion reflect

changes in the variances of life-cycle shocks and not cohort effects.

Time series fit The variance of log male wages increases by around 15 log points over the

sample period, with especially rapid growth in the 1980s. How do the moments involving

consumption and hours account for the partition of this increase, described in Figure 3,

between insurable and uninsurable risk? Figure 4 plots the evolution over time of these

moments, alongside the corresponding values for the estimated model.

Over the first half of the sample, we see a sharp rise in the wage-hours correlation (Panel

D). The model interprets this as indicating a rise in the variance of the insurable wage

component and a fall in the variance of the uninsurable component. The latter translates

into a theoretical prediction of modestly declining consumption inequality before 1980, when

our CEX sample begins. This pattern for consumption inequality parallels the dynamics of

the skill premium over the period.48

After 1980 consumption data are available and further inform the estimation. The vari-

ance of log consumption grows by only about 5 log points between 1980 and 2006, in line

with earlier estimates by Krueger and Perri (2006). This rise, paired with the one in the

47Around 1992-1993, this variance displays a spike. This estimated higher volatility may be linked to the
fact that survey year 1993 was the first year of computer-assisted telephone interviewing in the PSID. In the
previous version of the paper (Heathcote et al., 2012), we allowed for a temporary increase in measurement
error in 1992. Except for a slightly smaller variance of the transitory shock in 1992, this extension was
inconsequential for the rest of the estimation, and hence in the current version we have omitted it.

48It is also broadly consistent with evidence from Slesnick (2001, chapter 6), who, notwithstanding data
comparability issues, uses CEX data pre-1980 in order to construct a longer series for US consumption
dispersion. Guvenen and Smith (2010, Figure A.1) impute nondurable consumption into the PSID from the
CEX going back to 1967 and also uncover a decline in the variance of log consumption over the first decade
of their sample.
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wage-consumption correlation, calls for an increase in uninsurable wage dispersion and a

slowdown in the rise of insurable wage dispersion. This pattern is also consistent with

the end of growth in the empirical wage-hours correlation. The increase in the variance of

consumption over time is small relative to the increase in uninsurable wage dispersion (see

Figure 3) because, as with the life-cycle dimension, labor supply and progressive taxation

mitigate the impact of uninsurable wage dispersion on consumption dispersion.

Larger uninsurable wage shocks tend to drive the consumption-hours correlation down

over time. To offset this force and replicate the roughly flat pattern for the correlation in

the data, the estimation calls for a modest increase over time in preference dispersion (see

Table 2 in the Technical Appendix).

Figure 5 shows the time series plots for moments in first and second differences. Recall

that these moments are driven primarily by measurement error and transitory wage shocks,

given the relatively small estimated variances for the innovations to permanent shocks. Thus

we can point to the rise in the variance of wage growth over time as the source of the

corresponding rise in the estimated variance of transitory shocks (Panel C of Figure 3).

These larger transitory shocks, in turn, account for the model-predicted increase in the

correlation between wage and hours growth.

5.4 Inequality decomposition

We now turn to the third motivating question of our paper. Is observed cross-sectional

inequality primarily the result of life-cycle shocks, initial heterogeneity in productivity and

preferences, or simply measurement error? Given parameter estimates and the moment

expressions in eqs. (17)-(22), variance decompositions are unique and easy to compute.

Cross-sectional average In Table 3, we report the average contribution of each compo-

nent across the entire 1967–2006 period.49

Interestingly, initial heterogeneity explains between 40% and 50% of the observed vari-

ance for all variables. However, the source of this inequality at labor market entry varies.

Preference heterogeneity is dominant in accounting for dispersion in hours worked, whereas

heterogeneity in productivity (mostly uninsurable) is paramount for wages, earnings, and

consumption. Measurement error also plays a large role, accounting for one-third of the

observed variance for both hours and consumption. The flipside of the finding that initial

49These values are computed by taking survival-probability-weighted averages across within-age-group
values for dispersion at each date, and then computing a simple average across the years in our sample.
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Table 3: Decomposition of Cross-Sectional Inequality

Total
Variance

Percent Contribution to Total Variance

Initial Heterogeneity Life-Cycle Shocks Measurement
Prefs. Unins. Ins. Unins. Ins. Error

var(log ŵ) 0.351 0.0 31.5 10.0 17.1 31.3 10.1

var(log ĥ) 0.107 48.9 2.2 3.2 1.2 9.8 34.7
var(log ŷ) 0.432 11.7 22.8 12.5 10.4 43.7 0.0
var(log ĉ) 0.159 20.0 32.6 0.0 17.8 0.0 29.6

heterogeneity and measurement error account for a large share of dispersion in consumption

and hours worked is that life-cycle shocks to wages contribute relatively little to dispersion

in these variables. Instead, life-cycle shocks explain half of the cross-sectional variation in

wages and earnings.

We conclude that there is no simple answer to the question: What determines measured

cross-sectional inequality among households? The answer depends on the variable of interest:

for hours it is mostly preference heterogeneity and measurement error; for wages and earnings

it is dispersion in productivity, predominantly over the life cycle; while for consumption it

is a mix of all these factors.

Lifetime earnings An alternative way to measure the relative roles of initial conditions

versus life-cycle shocks is in terms of their contributions to discounted lifetime pre-tax earn-

ings. Storesletten, Telmer, and Yaron (1994) conclude that roughly half of the variance of

lifetime earnings is attributable to variation in initial conditions. Huggett, Ventura, and

Yaron (2011, Table 5) estimate that heterogeneity in initial conditions accounts for 62% of

the variance of lifetime earnings.50 We have simulated a distribution for discounted lifetime

earnings in our model, making the following two assumptions: 1) earnings are discounted at

an annual rate of 4.2% over a 38 year working life (as in Huggett et al.), and 2) all wage

innovations and initial conditions are log-normally distributed. Our estimates imply that

initial conditions (i.e., dispersion in κ0, α0 and ϕ̂) account for 63% of the variance of lifetime

earnings, which is very similar to the Huggett et al. estimate.51

50In an important early contribution, Keane andWolpin (1991) estimated this fraction to be 91%. However,
their estimate is a loose upper bound, because their model assumes i.i.d. wage shocks. That assumption,
made for computational reasons, is clearly counterfactual.

51Huggett, Ventura and Yaron (2011) omit preference heterogeneity from their model, which we estimate
to be an important determinant of inequality. On the other hand, an important initial condition in their
model (but not ours) is idiosyncratic learning ability.
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5.5 Estimation without consumption data

Section 3 documents that moments involving labor supply are informative about risk sharing.

Proposition 3 proves that the model is in fact identified without any data on consumption.

In this section, we exploit this identification result and re-estimate the model using only data

on wages and hours from the PSID.52 One motivation for this exercise is that there is some

debate about how much consumption inequality has risen over time in the United States (e.g.,

Attanasio, Battistin, and Ichimura, 2007; Aguiar and Bils, 2011). A second motivation is

that the literature on risk sharing to date focuses almost exclusively on moments involving

consumption, and we would like to know whether moments involving labor supply tell a

comparable story in terms of the fraction of idiosyncratic risk that households can insure.

When we estimate the model without CEX data, we find that the estimations with and

without consumption data deliver very similar dynamics for the insurability of wage risk.

Panel A of Figure 6 shows that the insurable fraction of total cross-sectional wage disper-

sion, as estimated without consumption data, is very close to the corresponding fraction in

the baseline when consumption moments are used. Moreover, the estimated pass-through

coefficient φ̄w,c is essentially unchanged relative to the baseline case (0.41 compared to 0.39).

The main difference relative to the baseline estimates is that estimated preference het-

erogeneity is now much smaller (see column (6) in Table 2). Figure 6 shows that lower

preference heterogeneity translates to predicted levels for the variance of log consumption

(Panel B) and the consumption-hours correlation (Panel D) that are much too low relative

to their empirical counterparts. We conclude that it is consumption moments, and especially

the positive covariance between consumption and hours, that offer the strongest evidence of

extensive preference heterogeneity. Because the model without consumption data estimates

a smaller role for preference heterogeneity, it calls for a higher Frisch elasticity of labor sup-

ply (1/σ̂ is now 0.45) in order to replicate observed hours dispersion. Although the model

is estimated without consumption data, it replicates the dynamics of consumption moments

remarkably well, subject to the caveat about levels discussed above (see also Figures E1 and

E2 in the Technical Appendix).53

Taken together, these results indicate that moments involving labor supply and moments

52The identification proof of Proposition 3 is up to an external estimate for measurement error in earnings.
We therefore impose the baseline estimate vµy = 0.

53We experimented with estimating the model without consumption data while imposing the baseline
estimates for γ, σ, and vϕ. In this case, the no-consumption-data model consumption moments are virtually
indistinguishable from those of the baseline model.
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involving consumption paint a very consistent picture with respect to how much insurance

households achieve against idiosyncratic risk. This finding is reassuring from the standpoint

of theory and strengthens the case for using labor supply moments in future studies of risk

sharing – especially given the high quality and long panel dimension of existing datasets that

record hours worked.

We have conducted our analysis within a simple static model of labor supply in which

wages are exogenous. While this is a natural starting point to explore how micro data

on labor supply can inform the study of risk sharing, one interesting direction for future

work would be to consider dynamic models in which current hours worked affect future

wages. In a stripped down version of our framework, we have experimented with introducing

learning by doing along the lines of Imai and Keane (2004). In one parametric special

case, insurable and uninsurable shocks turn out to have exactly the same effects on labor

supply and consumption as in the benchmark specification. Thus, the identification of model

parameters, including the degree of insurance, remains valid. The only difference relative

to the benchmark model is that wages now have an endogenous component. In particular,

transitory insurable shocks have a permanent effect on wages because working more hours

today raises future productivity. This analysis suggests that introducing learning by doing

is one way to micro-found the existence of permanent insurable shocks.54

5.6 Robustness and statistical fit

We now examine the robustness of our estimates with respect to (i) the statistical model for

the variances of the innovations η and ω, and (ii) the choice of the weighting matrix used in

estimation.

We begin by estimating a version of our model where vηt and vωt follow unrestricted time

sequences instead of fourth-order polynomials of time. The results, reported in column (2) of

Table 4, show that parameter estimates are remarkably similar across the two versions of the

model. Figure E3 in the Technical Appendix compares the two time series for the variances.

The polynomials capture the main low-frequency dynamics of the two series while avoiding

the abrupt fluctuations from one year to the next and the many zero boundary values that

are features of the unconstrained sequences.

The first alternative weighing scheme that we explore is one where, rather than giving

each moment equal weight, we weigh each moment by its number of observations – a scheme

54More details of this extension are available upon request.
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Table 4: Parameter Estimates: Robustness on Baseline Model Estimates

Baseline (2) (3) (4) (5) (6)

σ 2.165 2.139 2.029 2.443 1.981 2.077
γ 1.713 1.691 1.715 1.745 1.610 1.747
vµh 0.036 0.036 0.037 0.027 0.037 0.038
vµy 0.000 0.000 0.000 0.000 0.000 0.000
vµc 0.041 0.041 0.042 0.033 0.039 0.043
vϕ̂ 0.054 0.054 0.054 0.052 0.048 0.063
vα0 0.102 0.102 0.088 0.106 0.105 0.083
vω 0.0056 0.0057 0.0070 0.0056 0.0055 0.0064
vκ0 0.047 0.047 0.053 0.047 0.048 0.056
vη 0.0044 0.0044 0.0045 0.0051 0.0043 0.0056
vθ 0.043 0.042 0.040 0.039 0.042 0.045

1/σ̂ 0.347 0.351 0.368 0.310 0.376 0.364

p- value of
OID test 0.99 – – – – 0.99

Notes: The baseline estimates are reproduced from Table 1. Other columns: (2) unrestricted

sequences for vηt and vωt, (3) each moment weighted by its number of observations, (4) each moment

weighted by the inverse of the corresponding element on the diagonal of the fourth moment matrix,

(5) weighting scheme that realigns (absolute) values of moments. Variables with bars (e.g., vθ)

denote average estimates over the sample period, (6) minimum distance estimation on collapsed

set of moments. The OID tests for the models in columns (1) and (6) have χ2 distributions with

11, 368 and 580 degrees of freedom, respectively.

that puts more weight on the PSID moments and on the moments in levels. The second

alternative is a weighting matrix with elements given by the inverse of the diagonal of

the fourth-moment matrix described in the Technical Appendix.55 The third alternative

weighing matrix divides every variance at age/year (a, t) by its sample average value, and

every covariance between pairs of variables (x, y) at age/year (a, t) by the product of the

sample average of the standard deviations of x and y.56 This addresses a potential concern

that under our baseline weighting scheme (the identity matrix) moments whose values are

large on average (e.g., the variance of log wages) will receive more weight than moments

whose values are closer to zero on average (e.g., the variance of changes in log hours), since

55The square roots of the elements in this matrix provide the standard errors of the corresponding elements
in the vector of empirical moments. Hence, this weighting matrix gives more emphasis to moments measured
more precisely. As discussed in Blundell et al. (2008), this method avoids the pitfalls of using the full optimal
weighting matrix described by Altonji and Segal (1996), which are primarily related to the terms outside
the main diagonal.

56Effectively, we match correlations instead of covariances. Dividing the covariances at (a, t) by their
sample average is not feasible because some of them are too close to zero.
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the estimation algorithm minimizes the sum of squared residuals between empirical and

theoretical moments.

Estimation results under these three alternative schemes are reported in columns (3)-(5)

of Table 4. Point estimates are always within two standard deviations of the benchmark,

and often much closer. Also the time paths of all the variances are very similar to those of

the baseline model.

The last row of Table 4 presents a test of the overidentifying restrictions (OID), a χ2

statistic with degrees of freedom equal to the number of moments in excess of the number

of parameters. When the test is performed on the baseline set of moments (and hence, with

11,368 degrees of freedom), the p-value is near 1 indicating that the structural model cannot

be rejected. In the context of dynamic panel data models, Bowsher (2002) reports severe loss

of power of OID tests when the number of overidentifying restrictions is large relative to the

number of observations used to calculate each moment.57 To strengthen test power, one has

to reduce the number of restrictions. We therefore collapse our full set of age/year moments

into unconditional moments by age and by year.58 When the model is re-estimated on this

smaller set of moments we achieve very similar point estimates for all parameters (column

(6) of Table 4). More importantly, the OID test performed on this subset of restrictions still

returns a large p-value, above 0.99. This suggests that the model cannot be rejected and

that it fits the data quite well in a purely statistical sense. The Technical Appendix contains

a detailed description of how we compute the test statistics.

6 Conclusion

In this paper, we have developed a novel theoretical framework to analyze consumption and

labor supply in the presence of idiosyncratic labor income shocks. A distinguishing feature

of the model is that it can be solved analytically. Tractability is achieved by extending

the environment of Constantinides and Duffie (1996) to incorporate flexible labor supply,

partially insurable wage risk, progressive taxation, and heterogeneity in the taste for leisure.

57Monte Carlo simulations in Bowsher (2002) show that inference becomes misleading as soon as the
number of overidentifying restrictions approaches the number of observations. In our case, the average
number of observations used in PSID is 285 and in CEX is 179.

58See Roodman (2009) for a discussion of this “collapsed instruments” technique and a list of applications.
After collapsing the moments, we end up with 580 overidentifying restrictions, and an average number of
observations per moment of 8,291 in PSID and 5,318 in CEX. Note that Roodman (2009) also reports
that unbiasedness of the estimates is not affected by this instrument proliferation; if anything estimates are
slightly more precise.
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From the closed-form equilibrium allocations, it is straightforward to derive expressions

for the cross-sectional (co-)variances of wages, hours, and consumption. These expressions

allow, in turn, a formal identification proof and facilitate the estimation of the structural

parameters. We used this framework (i) to measure the extent to which US households can

insure against wage risk, (ii) to quantify how risk sharing has changed over the past 40 years

–a period of sharp widening in the wage distribution, and (iii) to decompose the sources of

cross-sectional inequality in wages, hours and consumption.

This paper takes a first step toward showing how labor supply can help identify insurance,

an exercise usually done with consumption data only. The framework could be extended

to incorporate a participation decision along the extensive margin. For example, with a

minimum requirement on hours worked per period, equilibrium labor supply allocations

would feature a threshold such that low wage workers do not work. Combining evidence on

both the extensive and intensive margins would, in principle, bring even more information

to bear on the nature of risk and insurance. Future work should also study how labor supply

data can inform the study of risk-sharing in dynamic models for labor supply, where current

hours affect future wages thanks to some form of human capital accumulation.

The theoretical framework can be extended to shed light on a range of macroeconomic

questions where heterogeneity and risk are central to the analysis. In Heathcote, Storeslet-

ten, and Violante (2010a), we use a version of the model to explore the optimal degree of

progressivity in the tax schedule, focusing on how the optimal degree of public redistribu-

tion varies with the fraction of wage risk that can be insured privately, the desire for public

goods, and the elasticity of labor supply. In Heathcote, Storesletten, and Violante (2011a),

we extend the model to incorporate an education choice, and quantify the welfare effect

of the observed increase in the college premium, alongside the observed rise in wage risk

within education groups. Finally, it is also possible to introduce aggregate shocks that are

correlated with the variance of idiosyncratic risk, as in Constantinides and Duffie (1996) and

Storesletten, Telmer, and Yaron (2004b), and non time-separable Epstein-Zin preferences.

Such an extended setup is a natural environment for studying asset pricing, and the welfare

costs of business cycles.

Many of these issues have been extensively explored using conventional incomplete-

markets models and numerical solution methods. The reason to revisit them is that our

framework remains tractable when extended along these dimensions, making the economic

forces at play transparent and readily quantifiable.
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A Appendix for Publication

A.1 Proof of Proposition 1

The proof is in two parts. In the first we describe a planner’s problem and show that the solution to
this problem is the allocations for consumption and hours described in Proposition 1, part (ii). In
the second, we decentralize these allocations in a competitive equilibrium and show that the asset
prices described in Proposition 1, part (iii), and the no-inter-island-trade result described in part
(i) form part of this decentralization. In what follows, we omit some technical details the proof.
See Technical Appendix A for a complete derivation.

Planner’s allocations: We first solve for equilibrium allocations for consumption and hours
worked by solving a set of static planning problems. Each island-level planner maximizes equally
weighted period utility for a set of agents that share a common age a, a common preference weight
ϕ, and a common wage component αt. Let xt = (a, ϕ, αt) denote these island-level components
of the individual state. Each island-level planner controls a set of agents with the age-specific
population distributions for the wage components F a

κ,t and Fθ,t. Let F a
ε,t denote the implied age-

specific distribution over κt + θt. The planner’s problem on an island defined by xt is to choose
functions ct(xt, εt), ht(xt, εt) to solve

max
{ct(xt,·),ht(xt,·)}

∫ [
ct(xt, εt)

1−γ − 1

1− γ
− exp (ϕ)

ht(xt, εt)
1+σ

1 + σ

]
dF a

ε,t

subject to the island-level resource constraint

∫ [
λ (exp (αt + εt)ht(xt, εt))

1−τ − ct(xt, εt)
]
dF a

ε,t = 0. (1)

Combine the first-order conditions with respect to ct and ht to get

ht(xt, εt) = ((1− τ)λ)
1

σ+τ ct(xt, εt)
− γ

σ+τ exp

(
(αt + εt)

(
1− τ

σ + τ

)
−

1

σ + τ
−

ϕ

σ + τ

)
. (2)

Substituting (2) into (1), using the definition for the tax-modified Frisch elasticity σ̂ = (σ+τ)/(1−
τ), and rearranging yields the expressions for ct and ht in eq. (7)-(8), where Ca

t and Ha
t are

constants common to all agents of age a in year t given by

Ca
t =

1

σ̂ + γ
((1 + σ̂) log λ+ log(1− τ)) +Ma

t

Ha
t ≡

1

(1− τ) (σ̂ + γ)
((1− γ) log λ+ log(1− τ))−

γ

σ̂(1− τ)
Ma

t

Ma
t =

σ̂

σ̂ + γ
log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt

)
dF a

ε,t.

Decentralization (prices): To decentralize the solution to the above planner’s problem, we
start by conjecturing prices in this equilibrium. Pre-tax wages equal individual labor productivity,
w(xt, εt) = exp(αt + εt). At this wage, the intratemporal first-order condition from the agent’s
problem described in Section 2.1 is identical to the intra-temporal first order condition for the
planner described in eq. (2). Thus at competitive wages and the conjectured allocations (eqs.
7 and 8), agents are optimizing on the intra-temporal margin. At first blush this might seem
surprising, given the presence of progressive earnings taxation in the economy. Recall, however,
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that individual agents (in the competitive equilibrium) and island-level planners (in the problem
described above) are both atomistic and take the tax/transfer system parameters as exogenous.

To conjecture equilibrium prices for intertemporal insurance claims, it is convenient to revert
to history-dependent notation and write ct(s

t) rather than ct(xt, εt). We begin with the price of
within-island insurance Qt

(
S; st

)
. The intertemporal first-order condition from the agent’s problem

(Section 2.1) defines the price at which an agent of age a with history st is willing, on the margin,
to buy or sell a set of insurance contracts Bt(S; s

t) that pay δ−1 units of consumption if and only if
st+1 = (ωt+1, ηt+1, θt+1) ∈ S ⊆ S. This price is simply the average marginal rate of substitution in
those states. Substituting in the expression for consumption (7) yields the expression for Qt

(
S; st

)

in eq. (9) of Proposition 1. Thus the prices Qt(S; s
t) are consistent with optimization on the

consumer side.
Note that Qt

(
S; st

)
= Qt(S): insurance prices are independent of the individual history st

and age a. From eq. (9) there are two pieces to this result. First, Fs,t+1, the joint distribution
over st+1 = (ωt+1, ηt+1, θt+1) at t + 1, is independent of st and thus the second term in eq. (9)
is independent of st. Second, insurance prices are also independent of age a, because the growth
in average consumption exp

(
Ca+1
t+1 − Ca

t

)
is independent of age, reflecting the permanent-transitory

model for individual productivity dynamics. Note also that due to full insurance against (ηt+1, θt+1),
the price of insurance against ηt+1 and θt+1 simply reflects probabilities, while the price of insurance
against ωt+1 also reflects the conditional marginal rate of substitution, with insurance against low
ωt+1 realizations being more expensive than equally likely high ωt+1 realizations.

We now turn to the price function for insurance claims traded across islands. Because any
contract that can be traded between islands can also be traded within an island, the inter-island
price for a claim that pays δ−1 units of consumption iff st+1 ∈ Z must, by arbitrage, equal the
corresponding within-island price, for any Z. This implies Q∗

t

(
Z; st

)
= Pr ((ηt+1, θt+1) ∈ Z) ×

Qt(S) = Q∗
t (Z), where Qt (S) is the price of insurance against all states (i.e., a risk-free bond).

Thus these prices are just probabilities times Qt (S).

Decentralization (asset purchases): We now derive asset purchases, Bt(st+1; s
t) and

B∗
t (ηt+1, θt+1; s

t) and verify that agents’ budget constraints are satisfied in equilibrium.
Given that any available inter-island insurance contract can be purchased at the same price

on the within-island market, B∗
t (ηt+1, θt+1; s

t) = 0 for all (ηt+1, θt+1) is consistent with individual
optimization (Proposition 1, part (iii)). Thus, agents are optimizing by purchasing all their insur-
ance on the island on which they are located. At the same time, because Q∗

t

(
Z; st

)
= Q∗

t (Z) , no
agent has an incentive to try to sell insurance to an agent located on another island. To understand
this, note that the price at which one agent (say agent i1) with history sti1 is willing to buy, on
the margin, a set of claims that pay if and only if (ηt+1, θt+1) ∈ Z is the probability of that event
times agent i1’s expected marginal rate of substitution, i.e., Pr ((ηt+1, θt+1) ∈ Z)×Qt

(
S; sti1

)
. The

price at which a second agent on a different island (agent i2 with history sti2) is willing to sell
this insurance to agent i1 is the same probability times agent i2’s expected marginal rate of sub-
stitution, Pr ((ηt+1, θt+1) ∈ Z) × Qt

(
S; sti2

)
. If agents i1 and i2 did not share the same marginal

rate of substitution (i.e., if Qt

(
S; sti1

)
6= Qt

(
S; sti2

)
), then there could be no equilibrium without

inter-island trade, because any such equilibrium would feature unexploited gains from trade. Thus,
Qt(S, s

t) = Qt(S) is the crucial result supporting an absence of inter-island trade.
Finally, we now derive an expression for purchases of state-contingent claims, Bt(st+1; s

t), and
verify budget balance. Given B∗

t (Z; st) = 0 ∀Z,∀st, realized wealth at st implicitly defines insurance
purchases Bt−1(st; s

t−1) = δdt(s
t). Since insurance payouts must deliver the discounted present

value of lifetime differences between consumption and after-tax earnings, the realized wealth must
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be

dt(s
t) = Tt

(
st
)
+ Est




∞∑

j=1

(βδ)j ct+j(s
t+j)−γ

ct(st)−γ
Tt+j

(
st+j

)

 ,

where Tt+j

(
st+j

)
≡ ct+j

(
st+j

)
− λ

(
w
(
st+j

)
ht+j

(
st+j

))1−τ
is the net transfer in period t+ j.

Given this guess for dt(s
t), it is straightforward to verify that the agent’s budget constraint is

satisfied (see Technical Appendix A for a complete derivation).

A.2 The household model of Section 3

Full insurance against (g, k): Assume that utility for individual i in a household of g adult
workers and k children is

u(c, hi, g, k) =
1

1− γ

(
c

e(g, k)

)1−γ

−
exp (ϕ)

1 + σ
h1+σ
i ,

where c is household consumption and hi is agent i’s hours worked. The household attaches equal
weights to all adults and no weight to the children.

As in Section A.1, let xt = (a, ϕ, αt) denote the island-level components of the individual state.
The planner can insure against realizations of εt, g, and k. The planner problem is to choose
functions ct(xt, g, k) and hit(xt, εt, g, k) for i = 1, ..., g to solve

max
{ct(xt,·),hit(xt,·)}

∫ [
g

1− γ

(
ct(xt, g, k)

e (g, k)

)1−γ

−

g∑

i=1

∫
exp (ϕ)

1 + σ
hit(xt, εt, g, k)

1+σ dF a
εt

]
dFt (g, k) , (3)

subject to the island-level after-tax resource constraint

∫ [
ct(xt, g, k) −

g∑

i=1

∫
λ [exp (αt + εt) hit (xt, εt, g, k)]

1−τ dF a
εt

]
dFt (g, k) = 0, (4)

where eqs. (3)-(4) incorporate the within-island distribution Ft (g, k) of household workers and
children, and where, based on the result in Section A.1, we have already let consumption be
independent of εt.

The first-order condition w.r.t. ct implies that consumption for a (g, k) household is

ct (xt, g, k) = ct (xt, 1, 0)

(
g

e (g, k)1−γ

)1/γ

. (5)

Combine the first-order conditions w.r.t. ct and hit with eqs. (4)-(5) to derive an expression
for ct (xt, 1, 0). Define D (g, k) ≡ (log g) /γ − (1− γ) /γ log(e(g, k)). Then use eq. (5) and the defi-
nitions for σ̂ and ϕ̂ to derive the equilibrium allocations for household consumption and individual
hours,

log ct (xt, g, k) = D (g, k)− (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + Ca

t (6)

log hit (xt, εt, g, k) = −ϕ̂+

(
1− γ

σ̂ + γ

)
αt +

1

σ̂
εit +Ha

t , (7)

where expressions for Ca
t and Ha

t are in Technical Appendix B.1. Note that hours do not depend
on (g, k)
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No insurance against (g, k): Consider now the model without insurance against household type.
In this model, there is no within-island variation in household composition (g, k). Thus the island-
level components of the individual state are xt = (a, ϕ, αt, g, k), and the island planner problem
corresponding to the competitive equilibrium is to choose a number ct(xt) and functions hit(xt, εt)
for i = 1, ..., g to solve

max
ct(xt),{hit(xt,,·)}

{
g

1− γ

(
ct(xt)

e (g, k)

)1−γ

−

g∑

i=1

∫
exp (ϕ)

1 + σ
hit(xt, εt)

1+σ dF a
εt

}

s.t. ct(xt)−

g∑

i=1

∫
λ [exp (αt + εit)hit (xt, εt)]

1−τ dF a
εt = 0.

In Technical Appendix B.2 we derive the following allocations:

log ct(xt) = Dc (g, k)− (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + Ca

t

log hit(xt, εt) = Dh (g, k) − ϕ̂+
1− γ

σ̂ + γ
αt +

κit + θit
σ̂

+Ha
t ,

where the equivalization dummies are Dc (g, k) = ((1 + σ̂) log g − (1 − γ) log e(g, k))/(σ̂ + γ) and
Dh (g, k) = (Dc (g, k)− log g) /(1− τ).

A.3 Proofs of Identification

A.3.1 Proof of Proposition 2

The proof is organized in four recursive steps.

Step A. The four (sets of) parameters σ̂, γ, {vηt +∆vθt}
T
t=2 , {vωt}

T
t=2 are identified from

within-cohort changes in the macro moments, ∆varat (log ŵ) , ∆varat (log ĥ), ∆varat (log ĉ), and
∆covat (log ŵ, log ĉ), all available from t = 2, ..., T . These parameters are identified recursively
as follows. Each element of the sequence {vωt}

T
t=2 is identified by:

∆covat (log ŵ, log ĉ)
2 /∆varat (log ĉ) = vωt.

Given vωt , each element of the sequence {vηt +∆vθt}
T
t=2 is identified by

∆varat (log ŵ) = vωt + (vηt +∆vθt) .

Given vωt and vηt +∆vθt, the tax-modified Frisch elasticity σ̂ is identified by

∆varat (log ĥ) = [∆covat (log ĥ, log ĉ)/∆covat (log ŵ, log ĉ)]
2vωt + 1/σ̂2 (vηt +∆vθt) .

Given σ̂, the parameter γ is identified by

∆covat (log ĥ, log ĉ)/∆covat (log ŵ, log ĉ) = (1− γ) / (σ̂ + γ) .

Step B. Since σ̂ is known, the variances of transitory insurable shocks {vθt}
T−1
t=1 are identified

from the difference between the dispersion in growth rates (“micro moments”) and the growth rate
of within-cohort dispersion (“macro moments”) available from t = 2, ..., T :

covat (∆ log ŵ,∆ log ĥ) + varat (∆ log ĥ)−∆covat (log ŵ, log ĥ)−∆varat (log ĥ) = 2 (1 + σ̂) /σ̂2 vθ,t−1.
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Combining the sequence {vθt}
T−1
t=1 with {vηt +∆vθt}

T
t=2 identifies {vηt}

T−1
t=2 . Substituting the value

for vθ,T−1 into (vηT +∆vθT ) from Step A identifies (vηT + vθT ).

Step C. Since σ̂ and γ are known, the following moments, available for all t = 1, ..., T and

evaluated for the youngest age group, identify the cohort effects sequence
{
vϕ̂t, vα0t

}T
t=1

:

cov0t (log ŵ, log ĉ) = (1− τ) (1 + σ̂) / (σ̂ + γ) vα0t

cov0t (log ĥ, log ĉ) = (1− τ) vϕ̂t + (1− τ) (1 + σ̂) (1− γ) / (σ̂ + γ)2 vα0t.

Then {vκ0t}
T−1
t=1 and (vκ0T + vθT ) are identified from

cov0t (log ŵ, log ĥ) + var0t (log ĥ) = vϕ̂t + (1− γ) (1 + σ̂) / (σ̂ + γ)2 vα0t + (1 + σ̂) /σ̂2 (vκ0t + vθt) .

Step D. Finally, the variances of measurement error {vµy, vµh, vµc} are identified from the
following moments in levels, for example those corresponding to the youngest age group:

cov0t (log ŵ, log ĥ) = (1− γ) / (σ̂ + γ) vα0t + 1/σ̂ (vκ0t + vθt)− vµh

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh

var0t (log ĉ) = (1− τ)2 vϕ̂t + (1− τ)2 (1 + σ̂)2 / (σ̂ + γ)2 vα0t + vµc.

A.3.2 Proof of Corollary 2.1

At dates t = t̂, t̂ + 1, the data availability is the same as in Proposition 2, and hence one can
identify vµy. Applying Proposition 3 to dates other than (t̂, t̂+ 1) when only wage and hours data
are available, the whole model is then identified.

A.3.3 Proof of Corollary 2.2

From Proposition 2 we identify the parameters {σ̂, γ, vµh, vµy, vµc}, the sequences
{
vϕ̂t, vα0t

}t̂
t=1

,

{vκ0t, vθt}
t̂−1
t=1, {vωt, vηt}

t̂
t=2, and the sums vη,t̂ + vθ,t̂ and vκ0t̂ + vθt̂.

From the cross-sectional moment ∆varat (log ĉ) = (1− τ)2 (1 + σ̂)2 / (σ̂ + γ)2 vωt, which is avail-

able every year, we can identify {vωt}
T
t=t̂+1. We identify the cohort effects

{
vϕ̂t, vα0t

}T
t=t̂+1

from
the moments, available in every year,

cov0t (log ŵ, log ĉ) = (1− τ) (1 + σ̂) / (σ̂ + γ) vα0t

cov0t (log ĥ, log ĉ) = (1− τ) vϕ̂t + (1− τ) (1 + σ̂) (1− γ) / (σ̂ + γ)2 vα0t.

By combining the moments

covat (∆
2 log ŵ,∆2 log ĥ)+varat (∆

2 log ĥ)−∆2covat (log ŵ, log ĥ)−∆2varat (log ĥ) = 2 (1 + σ̂) /σ̂2 vθ,t−2,

we identify {vθt} for the biannual years t = t̂, t̂+2, t̂+4, ..., T −2. Note that, since vθ,t̂ is identified,

so are vη,t̂ and vκ0t̂. From ∆2varat (log ŵ) = vωt + vω,t−1 +(vηt + vη,t−1 + vθt − vθ,t−2), available for

t = t̂, t̂+2, ..., T , we can identify the sum
{
vηt + vη,t−1 +∆2vθt

}
. This, together with the sequence

{vθ,t}, available for t = t̂, t̂ + 2, ..., T , allows us to identify {vηt + vη,t−1} for the biannual years
t = t̂, t̂+ 2, t̂+ 4, ..., T − 2, as well as {vηT + vη,T−1 + vθT }. Finally, consider the moment

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh.

This moment is available for the biannual years and identifies {vκ0t} for t = t̂, t̂+ 2, t̂+ 4, ..., T − 2
and vκ0,T + vθT .
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A.3.4 Proof of Corollary 2.3

Step A of Proposition 2 shows that T − 1 realizations of vωt are identified, and hence one can
uniquely identify all the coefficients of a time polynomial of order T − 2 or lower and recover the
entire time-series {vωt}

T
t=1 . From Step B of of Proposition 2, T −2 realizations of vηt are identified,

and in the same vein one can uniquely identify all the coefficients of a time polynomial of order
T −3 or lower and recover the entire time-series {vηt}

T
t=1 . Then, from Step A and Step B, it can be

seen that the whole sequence {vθt}
T
t=1 is identified. As a result, from Step C, one can identify the

entire time-series {vκ0t}
T
t=1 . The rest of the parameter vector is identified exactly as in Proposition

2.

A.4 Additional identifying assumptions

When we model vηt and vωt as time-polynomials, we make the following two additional assumptions
to complete identification in the missing PSID years:

1. For t = t̂+1, t̂+3, ..., T −1, assume vκ0,t =
v
κ0,t−1+v

κ0,t+1

2 . Given this “smooth cohort effects”
assumption, the moment

var1t (log ŵ)− var0t (log ŵ) =
(
vα0,t−1 + vωt

)
+
(
vκ0,t−1 + vηt

)
− vα0t − vκ0t (D8)

for t = t̂+2, t̂+4, ..., T identifies the corresponding values for vη,t. Given that {vη,t−1 + vηt}
is already identified for these years from Corollary 2.2 and Assumption 1, the corresponding
values for vη,t−1 are also identified.

2. For t = t̂+ 1, t̂+ 3, ..., T − 1, assume vθt =
vθ,t−1+vθ,t+1

2 .

When we estimate the model where variances are allowed to vary freely year by year, we
make the following three additional identifying assumptions, beyond 1. and 2. above, to complete
identification at endpoints:

3. Assume vκ0,T = vκ0,T−2. Given that
{
vκ0,T + vθ,T

}
and {vη,T−1 + vη,T + vθ,T} are already

identified from Corollary 2.2, this assumption identifies vθ,T and {vη,T−1 + vη,T }.

4. Assume vω1 = vω2.

5. Assume vη1 = vη2.
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Figure 1: Data and model fit for moments in levels along the age dimension. These plots are
constructed by regressing observations for all (age a, year t) cells on a set of age and cohort
dummies. The plots show the estimated age coefficients. For the variances of wages and
hours and for the wage-hours correlation, we use the entire 1967-2006 sample period. For
the moments involving consumption, we use the 1980-2006 sample for which consumption
data are available. The same regression procedure for constructing the age-profiles is applied
to the data and to the model-generated moments. Dotted lines denote 90–10 bootstrapped
confidence intervals for the empirical moments.
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Figure 2: Data and model fit for moments in differences along the age dimension. Panels in
the upper row show first differences for the years 1967-1996. Panels in the lower row show
second differences for the years 1967-2006. These plots are constructed by taking the average
across time for each age group a: we do not control for cohort effects in constructing these
plots, because differencing already eliminates cohort effects from the theoretical moments.
Dotted lines denote 90–10 bootstrapped confidence intervals for the empirical moments.
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Figure 3: Panel A plots the cross-sectional variance for the uninsurable component of wages
αt (series labeled “Total”) and the cross-sectional variance for the cohort-specific initial-age
uninsurable component α0

t (series labeled “Cohort”). Panel B plots the corresponding series
for the insurable component: κt (series labeled “Total”) and κ0

t (series labeled “Cohort”).
Panel C plots vθt. In Panel D the “Total” line is the ratio of the sum of the “Total” series in
Panels B and C to the total cross-sectional variance of wages (the sum of the “Total” series
in Panels A, B and C). The “Cohort” line in Panel D is the ratio of the “Cohort” series in
Panel B to the sum of “Cohort” lines in Panels A and B.
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Figure 4: Data and model fit for moments in levels along the time dimension. These plots
are constructed by aggregating across age groups within a given year by weighting each
age group by its survival probability to account for mortality. We use the same weights in
both model and data. Dotted lines denote 90–10 bootstrapped confidence intervals for the
empirical moments.
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Figure 5: Data and model fit for moments in differences along the time dimension. Panels
in the upper row show first differences for the years 1967-1996. Panels in the lower row
show second differences for the years 1967-2006. These plots are constructed by aggregating
across age groups within a given year by weighting each age group by its survival probability
to account for mortality. We use the same weights in both model and data. Dotted lines
denote 90–10 bootstrapped confidence intervals for the empirical moments.
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Figure 6: Data, baseline model estimated on the PSID and the CEX, and model estimated
without CEX data (series labeled “No CEX”). Plots in Panel A are constructed as the line
labeled “Total”in Panel A of Figure 3, and plots in Panels B-D as in Figure 4.
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This Technical Appendix is organized as follows. Section A contains an extended proof

of Proposition 1 (existence of no-trade competitive equilibrium and characterization of equi-

librium allocations, asset prices and asset purchases). Section B develops in detail the

two household models discussed in Section 3.1 of the paper which provide a foundation for

equivalizing the data. Section C contains identification proofs for Proposition 3 (when con-

sumption data are not available) and an extension for the case where data are biannual.

Section D describes the construction of the overidentifying restriction test statistic.

A Extended Proof of Proposition 1

The proof is in two parts. In the first part we describe a planner’s problem, and show

that the allocations for consumption and hours described in Proposition 1, part (ii) are

the solution to this problem. In the second part, we decentralize these allocations in a

competitive equilibrium, and show that the asset prices described in Proposition 1, part (iii)

and the no-inter-island-trade result described in part (i) form part of this decentralization.
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Planner’s Problem (allocations): We first solve for equilibrium allocations for con-

sumption and hours worked by solving a set of static planning problems. Each island-level

planner maximizes equally weighted period utility for a set of agents that share a common

age a, a common preference weight ϕ, and a common wage component αt. Let xt = (a, ϕ, αt)

denote these island-level components of the individual state. Each island-level planner con-

trols a set of agents with the age-specific population distributions F a
κ,t and Fθ,t. Let F a

ε,t

denote the implied age-specific distribution over εt = κt + θt. The planner’s problem on an

island defined by xt is to choose functions ct(xt, εt), ht(xt, εt) to solve

max
{ct(xt,·),ht(xt,·)}

∫ [
ct(xt, εt)

1−γ − 1

1− γ
− exp (ϕ)

ht(xt, εt)
1+σ

1 + σ

]
dF a

ε,t

subject to the island-level resource constraint
∫ [

λ (exp (αt + εt) ht(xt, εt))
1−τ − ct(xt, εt)

]
dF a

ε,t = 0.

The first-order conditions with respect to ct(xt, εt) and ht(xt, εt) are, respectively,

ct(xt, εt)
−γ = χt(xt),

exp (ϕ)ht(xt, εt)
σ = χt(xt)λ exp (αt(1− τ)) exp (εt(1− τ)) (1− τ)ht(xt, εt)

−τ ,

where χt(xt) is the multiplier on the date t resource constraint. Note that ct(xt, εt) =

χt(xt)
− 1

γ , and thus does consumption does not depend on εt. Combining the two FOCs

gives

ht(xt, εt) = ((1− τ) λ)
1

σ+τ ct(xt)
− γ

σ+τ exp

(
1− τ

σ + τ
(αt + εt)−

1

σ + τ
−

ϕ

σ + τ

)
. (A1)

Substituting (A1) into the resource constraint gives

ct(xt, εt) = λ((1− τ) λ)
1−τ
σ+τ exp (αt(1− τ)) ct(xt, εt)

−
γ(1−τ)
σ+τ exp

(
−
1 − τ

σ + τ

)

× exp

(
−
ϕ(1− τ)

σ + τ
+ αt

(1− τ)2

σ + τ

)∫
exp ((1− τ)εt) exp

(
(1− τ)2

σ + τ
εt

)
dF a

εt.

Taking logs and simplifying yields

log ct(xt, εt)

=
1 + σ

σ + τ + γ(1− τ)
log λ+

1− τ

σ + τ + γ(1− τ)
log(1− τ)−

1− τ

σ + τ + γ(1− τ)
ϕ

+
(1− τ) (1 + σ)

σ + τ + γ (1− τ)
αt +

σ + τ

σ + τ + γ(1− τ)
log

∫
exp

(
(1− τ)(1 + σ)

σ + τ
εt

)
dF a

εt.

2



By using the definition for the tax-modified Frisch elasticity σ̂ = (σ + τ)/(1− τ), the above

expression simplifies to:

log ct(xt, εt) = −
ϕ

σ̂ + γ
+

(1− τ) (1 + σ̂)

σ̂ + γ
αt + Ca

t (A2)

which is the expression in Proposition 1, part (ii), where Ca
t is a constant common to all

agents of age a in year t given by

Ca
t =

1

σ̂ + γ
((1 + σ̂) log λ+ log(1− τ)) +Ma

t ,

Ma
t =

σ̂

σ̂ + γ
log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt

)
dF a

ε,t.

Note that if we were to assume, for example, that log εat ∼ N
(
−

vaεt
2
, vaεt

)
, then we could solve

out the integral in the expression for Ma
t :

Ma
t =

1

σ̂ + γ

(
(1− τ)(1 + σ̂)

σ̂
(1− τ (1 + σ̂))

vεt
2

)
.

We now substitute the expression for log ct(xt, εt) in (A2) into (A1) to solve for log ht(xt, εt) :

log ht(xt, εt) = −
1

(1− τ) (σ̂ + γ)
ϕ+

(
1− γ

σ̂ + γ

)
αt +

1

σ̂
εt +Ha

t

which is the expression in Proposition 1, part (ii), where

Ha
t ≡

1

(1− τ) (σ̂ + γ)
((1− γ) log λ+ log(1− τ))−

γ

σ̂(1− τ)
Ma

t .

Decentralization (prices): We now turn to the second part of the proof of Proposition

1, namely the decentralization of the solution to the above planner’s problem. We begin

by conjecturing prices in this equilibrium. We set pre-tax wages equal to individual labor

productivity:

wt(xt, εt) = exp(αt + εt).

At this wage, the intratemporal FOC from the agent’s problem (2.1) described in the main

text is identical to the intratemporal FOC for the planner described in eq.(A1). Thus at

competitive wages and the conjectured allocations (eqs. 7 and 8) agents are optimizing on

the intratemporal margin. At first blush this might seem surprising, given the presence of

progressive earnings taxation in the economy. Recall, however, that individual agents (in

the competitive equilibrium) and island-level planners (in the problem described above) are

atomistic and hence both take the tax system parameters as exogenous.
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We next conjecture equilibrium prices for intertemporal insurance claims. At this point

it is convenient to revert to history-dependent notation, so we will write ct(s
t) rather than

ct(xt, εt). We begin with the price of within-island insurance Qt (S; s
t) . The intertemporal

FOC from the agent’s problem (2.1) defines the price at which an agent of age a with history

st is willing, on the margin, to buy or sell a set of insurance contracts Bt(S; s
t) that pay δ−1

units of consumption if and only if st+1 = (ωt+1, ηt+1, θt+1) ∈ S ⊆ S. This price is simply the

average marginal rate of substitution in those states:2

Qt

(
S; st

)
= βδδ−1

∫

S

ct+1(s
t, st+1)

−γ

ct(st)−γ
dFs,t+1. (A3)

Substituting in the expression for consumption (A2) we have

Qt

(
S; st

)
= β exp

(
−γ
(
Ca+1
t+1 − Ca

t

)) ∫

S

exp

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
ωt+1

)
dFs,t+1, (A4)

which is the expression in Proposition 1, part (iii), where Ca
t is defined above, and

Ca+1
t+1 − Ca

t =
σ̂

σ̂ + γ

[
log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt+1

)
dF a+1

ε,t+1 − log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt

)
dF a

ε,t

]

=
σ̂

σ̂ + γ
log



∫
exp

(
(1−τ)(1+σ̂)

σ̂
ηt+1

)
dFη,t+1

∫
exp

(
(1−τ)(1+σ̂)

σ̂
θt+1

)
dFθ,t+1

∫
exp

(
(1−τ)(1+σ̂)

σ̂
θt

)
dFθ,t




is independent of a. Thus the prices Qt(S; s
t) are consistent with optimization on the

consumer side.

Note that Qt (S; s
t) = Qt(S) : insurance prices are independent of the individual history

st and age a. From eq. (A4) there are two pieces to this result. First, Fs,t+1, the joint

distribution over st+1 = (ωt+1, ηt+1, θt+1) at t + 1, is independent of st and thus the second

term in eq. (A4) is independent of st. Second, insurance prices are also independent of age

a, because while average consumption Ca
t is age-dependent, growth in average consumption

Ca+1
t+1 − Ca

t is independent of age, reflecting the permanent-transitory model for individual

productivity dynamics. Note also that the price of insurance against ηt+1 and θt+1 simply

reflects probabilities, while the price of insurance against ωt+1 also reflects the conditional

marginal rate of substitution, with insurance against low ωt+1 realizations being more ex-

pensive than equally likely high ωt+1 realizations. This asymmetry reflects the fact that ηt+1

2Note that the agent effectively discounts at rate βδ, while mortality insurance ensures payment of δ−1

units of consumption in the event that the agent survives to the next period and st+1 ∈ S.
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and θt+1 are perfectly insured in equilibrium, while ωt+1 remains uninsured. The price of a

risk-free bond Qt (S) is

Qt

(
S; st

)
= β exp

(
−γ
(
Ca+1
t+1 − Ca

t

)) ∫

S

exp

(
−γ(1 − τ)

1 + σ̂

σ̂ + γ
ωt+1

)
dFs,t+1 = Qt (S) .

We now turn to the price function for insurance claims traded across islands. Because

any contract that can be traded between islands can also be traded within an island, the

inter-island price for a claim that pays δ−1 units of consumption iff st+1 ∈ Z must, by

arbitrage, equal the corresponding within-island price, for any Z. This implies

Q∗
t

(
Z; st

)
= Pr ((ηt+1, θt+1) ∈ Z)×Qt(S) = Q∗

t (Z) .

Thus these prices are just probabilities times the price of a risk-free bond.3

Assuming log-normal distributions for ωt+1, ηt+1 and θt+1 allows us to solve out the

integral in the expression for the risk-free rate Qt(S). In this case,

Ca+1
t+1 − Ca

t =
(1− τ)(1 + σ̂) (1− τ (1 + σ̂))

(σ̂ + γ) σ̂

(
vη,t+1 + vθ,t+1 − vθ,t

2

)

and thus

Qt (S) = β exp

(
−γ

(1 − τ)(1 + σ̂) (1− τ (1 + σ̂))

(σ̂ + γ) σ̂

(
vη,t+1 + vθ,t+1 − vθ,t

2

))

× exp

(
−γ(1 − τ)

1 + σ̂

σ̂ + γ

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
− 1

)
vω,t+1

2

)
. (A5)

Expression (10) in the main text is a special case when τ = 0.

Decentralization (asset purchases): We now derive expressions for insurance contract

purchases, Bt(st+1; s
t) and B∗

t (ηt+1, θt+1; s
t) and verify that, given all conjectured prices and

quantities, agents’ budget constraints are satisfied.

Given that any available inter-island insurance contract can be purchased at the same

price on the within-island market, B∗
t (ηt+1, θt+1; s

t) = 0 for all (ηt+1, θt+1) is consistent with

individual optimization (Proposition 1, part (iii)). Thus, agents optimize when purchasing

all their insurance on the island on which they are located. At the same time, because

Q∗
t (Z; s

t) = Q∗
t (Z) , no agent has an incentive to try to sell insurance to an agent located on

another island. To understand this, note that the price at which one agent (say agent i1) with

3If we allowed insurance contracts to be traded across islands contingent on ωt+1 then agents would pool
ωt+1 risk and insurance prices would be Pr ((ωt+1, ηt+1, θt+1) ∈ S)× β 6= Qt (S) .
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history sti1 is willing to buy, on the margin, a set of claims that pay if and only if (ηt+1, θt+1) ∈

Z is the probability of that event times agent i1’s expected marginal rate of substitution, i.e.

Pr ((ηt+1, θt+1) ∈ Z) × Qt

(
S; sti1

)
. The price at which a second agent on a different island

(agent i2 with history sti2) is willing to sell this insurance to agent i1 is the same probability

times agent i2’s expected marginal rate of substitution, Pr ((ηt+1, θt+1) ∈ Z)×Qt

(
S; sti2

)
. If

agents i1 and i2 did not share the same marginal rate of substitution (i.e., if Qt

(
S; sti1

)
6=

Qt

(
S; sti2

)
), then there could be no equilibrium without inter-island trade, because any such

equilibrium would feature unexploited gains from trade. Thus Qt(S, s
t) = Qt(S) is the crucial

result supporting an absence of inter-island trade.

Finally, we now derive an expression for purchases of state-contingent claims, Bt(st+1; s
t),

and verify budget balance. Given B∗
t (Z; s

t) = 0 ∀Z, ∀st, realized wealth at st implicitly

defines insurance purchases:

Bt−1(st; s
t−1) = δdt(s

t).

We will now guess and verify the following solution for dt(s
t) :

dt(s
t) = d̂t

(
st
)
+ Tt

(
st
)

where

Tt

(
st
)

= ct
(
st
)
− λ

(
wt

(
st
)
ht

(
st
))1−τ

,

d̂t
(
st
)

= E
st

[
∞∑

j=1

(βδ)j ct+j(s
t+j)−γ

ct(st)−γ
Tt+j (st+j)

]
.

The logic for this guess is that insurance payouts must deliver the appropriately discounted

present value of lifetime differences between consumption and after-tax earnings.

We now need to check that the agent’s budget constraint is satisfied. Given B∗
t (Z; s

t) = 0

∀Z, ∀st this amounts to checking that

ct
(
st
)
+

∫ ∫ ∫
Qt (ω, η, θ) Bt

(
(ω, η, θ) ; st

)
dω dη dθ = λ

(
wt

(
st
)
ht

(
st
))1−τ

+d̂t
(
st
)
+Tt

(
st
)
.

Given the conjecture for T (st) this simplifies to

∫ ∫ ∫
Qt (ω, η, θ) Bt

(
(ω, η, θ) ; st

)
dω dη dθ = d̂t

(
st
)
. (A6)

To verify that this equation is in fact satisfied, we will write the functions Qt (ω, η, θ) ,

Bt ((ω, η, θ) ; s
t) and d̂t (s

t) all in terms of the decision rule for consumption ct (s
t) . The ratio
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of after-tax earnings to consumption is

λ (wt (s
t)ht (s

t))
1−τ

ct (st)
= exp

(
(1− τ)

1 + σ̂

σ̂
εt −

γ + σ̂

σ̂
Ma

t

)
,

so

Tt

(
st
)

=

(
1− exp

(
(1− τ)

1 + σ̂

σ̂
(κt + θt)−

γ + σ̂

σ̂
Ma

t

))
ct
(
st
)

= ct(s
t)

(
1−

exp
(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
∫ ∫

exp
(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ,t

)
,

where the second line uses

Ma
t =

σ̂

σ̂ + γ
log

∫ ∫
exp

(
(1− τ)

1 + σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ.t.

Substituting the definition for Tt+j (st+j) into the one for d̂t (s
t), and multiplying and dividing

by ct(s
t), gives

d̂t
(
st
)

= ct(s
t)Est

[
∞∑

j=1

(βδ)j ct+j(s
t+j)−γ

ct(st)−γ

ct+j(s
t+j)

ct(st)
×

×

(
1− exp

(
(1− τ)

1 + σ̂

σ̂

(
κt +

j∑

i=1

ηt+i + θt+j

)
−

γ + σ̂

σ̂
Ma+j

t+j

))]

= ct(s
t)Est

[
∞∑

j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ
×

×


1−

exp
(
(1− τ)1+σ̂

σ̂

(
κt +

∑j
i=1 ηt+i + θt+j

))

∫
....
∫
exp

(
(1− τ)1+σ̂

σ̂

(
κt +

∑j
i=1 ηt+i + θt+j

))
dF a

κ,t dFη,t+1 ... dFη,t+j dFθ,t+j






= ct(s
t)

(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[∑∞
j=1 (βδ)

j ct+j(s
t+j)1−γ

ct(st)1−γ

]
, (A7)

where the second equation uses

Ma+j
t+j =

σ̂

σ̂ + γ
log

∫
....

∫
exp

(
(1− τ)

1 + σ̂

σ̂

(
κt +

j∑

i=1

ηt+i + θt+j

))
dF a

κ,t dFη,t+1 ... dFη,t+j dFθ,t+j.
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Thus

Bt−1((ωt, ηt, θt) ; s
t−1) (A8)

= δ
(
d̂t
(
st
)
+ Tt

(
st
))

= δct(s
t)

(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[
∞∑

j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ

]

+δct(s
t)

(
1−

exp
(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
∫
exp

(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ,t

)
.

Substituting eq. (A7) and eq. (A3) into eq. (A6) gives

βct
(
st
)γ

Est
[
ct+1(s

t, st+1)
−γ Bt

(
st+1; s

t
)]

(A9)

= ct
(
st
)
(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[
∞∑

j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ

]
.

Let LHS(st) denote the left-hand side of eq. (A9), substitute in eq. (A8) and simplify

LHS(st) = βct
(
st
)γ

Est
[
ct+1(s

t, st+1)
−γ δct+1(s

t+1)×

×

{(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt+1

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt+1

)
dF a+1

κ,t+1

)
Est+1

[
∞∑

j=1

(βδ)j ct+1+j(s
t+1+j)1−γ

ct+1(st+1)1−γ

]
+

+

(
1−

exp
(
(1− τ)1+σ̂

σ̂
(κt+1 + θt+1)

)
∫
exp

(
(1− τ)1+σ̂

σ̂
(κt+1 + θt+1)

)
dF a+1

κ,t+1dFθ,t+1

)}]

= βδct
(
st
)γ

Est
[
ct+1(s

t, st+1)
1−γ×

×

{(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est+1

[
∞∑

j=1

(βδ)j ct+1+j(s
t+1+j)1−γ

ct+1(st+1)1−γ

]
+

+

(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)}]

= βδct
(
st
)γ
(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[
Est+1

[
∞∑

k=1

(βδ)k−1 ct+k(s
t+k)1−γ

]]

= ct
(
st
)
(
1−

exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[
∞∑

k=1

(βδ)k
ct+k(s

t+k)1−γ

ct (st)
1−γ

]
,

which is the same as the right-hand side of eq. (A9). We conclude that the budget constraint

is satisfied when state-contingent bond purchases are given by eq. (A8).

8



B Household Models

We begin with the household model of Section 3 where household composition is insurable

(an abbreviated version is contained in Appendix A.2). Next, we present the alternative

model, also briefly discussed in Section 3, where demographics are uninsurable.

B.1 The household model of Section 3

Suppose that utility for individual i in a household of g adult workers (“g” for “grownups”)

and k children (“k” for kids) is given by

u(c, hi, g, k) =
1

1− γ

(
c

e(g, k)

)1−γ

−
exp (ϕ)

1 + σ
h1+σ
i ,

where c is household consumption and hi is i’s hours worked. The equivalence scale is given

by e and satisfies eg ∈ (0, 1], egg < 0, ek ∈ (0, 1], and e (1, 0) = 1 for all g ≥ 1 and k ≥ 0.

Assume that the household utility function attaches equal weights to all adults (and no

weight to the children), so total utility is given by

U =

g∑

i=1

u(c, hi, g) =
g

1− γ

(
c

e(g, k)

)1−γ

−

g∑

i=1

(
exp (ϕ)

1 + σ
h1+σ
i

)
(B1)

As in Section A, let xt = (a, ϕ, αt) denote the island-level components of the individual

state. Each island-level planner can insure realizations of εt, g, and k. The planner’s problem

is to choose functions ct(xt, g, k), hit(xt, εt, g, k) for i = 1, ..., g to solve

max
{c(xt,·),hit(xt,·)}

∫ [
g

1− γ

(
ct(xt, g, k)

e (g, k)

)1−γ

−

g∑

i=1

∫
exp ((γ + σ)ϕ)

1 + σ
hit(xt, εt, g, k)

1+σ dF a
εt

]
dFt (g, k)

subject to the after-tax resource constraint

∫ [ g∑

i=1

∫
λ [exp (αt + εit) hit (xt, εt, g, k)]

1−τ dF a
εt − ct(xt, g, k)

]
dFt (g, k) = 0,

where the objective function and the constraint recognize that there is a non-degenerate

within-island distribution Ft (g, k) of household workers and children. Moreover, in light of

the result of Section A, we have imposed that consumption is independent of εt.

The first-order conditions with respect to ct(xt, g, k) and hit(xt, εt, g, k) are, respectively,

ge (g, k)γ−1 ct(xt, g, k)
−γ = χt (B2)

exp (ϕ)hit(xt, εt, g, k)
σ+τ = χtλ (1− τ) exp ((1− τ)αt) exp ((1− τ) εt) , (B3)
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where χt is the multiplier on the date t island-level resource constraint.

Let ct(xt, 1, 0) denote household consumption for a one-person household. Then equation

(B2) implies

ct (xt, g, k) = ct(xt, 1, 0)

(
g

e (g, k)1−γ

) 1
γ

.

Combining the two first-order conditions (B2)-(B3) gives

hit(xt, εt, g, k) =

(
gct(xt, g, k)

−γ

e (g, k)1−γ

) 1
σ+τ

(λ (1− τ))
1

σ+τ exp

(
−

ϕ

σ + τ
+

(
1− τ

σ + τ

)
αt +

(
1− τ

σ + τ

)
εt

)
.

Substitute in the consumption expression for the one-person households:

hit = ct(xt, 1, 0)
− γ

σ+τ (λ (1− τ))
1

σ+τ exp

(
−

ϕ

σ + τ
+

(
1− τ

σ + τ

)
αt +

(
1− τ

σ + τ

)
εt

)
,

so individual hours are insensitive to household size.

Finally we can solve for ct(xt, 1, 0) from the island resource constraint:

0 =

∫ { g∑

i=1

∫
λ [exp (αt + εt) hit (xt, εt, g, k)]

1−τ dF a
εt − ct(xt, g, k)

}
dFt (g, k)

=

∫ { g∑

i=1

∫ ∫
λ
[
exp (αt + κit + θit) ct(xt, 1, 0)

− γ
σ+τ (λ (1− τ))

1
σ+τ

× exp

(
−

ϕ

σ + τ
+

1− τ

σ + τ
αt +

(
1− τ

σ + τ

)
εt

)]1−τ

dF a
εt

−ct(xt, 1, 0)

(
g

e (g, k)1−γ

) 1
γ

}
dFt (g, k) .

Collecting terms:

ct(xt, 1, 0)
1+( 1−τ

σ+τ )γ

= ḡ exp

(
(1− τ) (1 + σ)

σ + τ
αt −

1− τ

σ + τ
ϕ

)
×

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

× (1− τ)
1−τ
σ+τ (λ)

1+σ
σ+τ

(∫ (
g

e (g, k)1−γ

) 1
γ

dFt (g, k)

)−1

,

where ḡ =
∫
g dFt (g, k). Substitute out for σ̂ = (σ + τ) / (1− τ) and simplify the expression

as:

log ct(xt, 1, 0) = (1− τ)
1 + σ̂

γ + σ̂
αt −

ϕ

γ + σ̂
+ Ca

t ,
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where the constant Ca
t is defined as

exp Ca
t = (ḡ)

σ̂
γ+σ̂

(∫ (
g

e (g, k)1−γ

) 1
γ

dFt (g, k)

)− σ̂
γ+σ̂

(1− τ)
1

γ+σ̂ (λ)
1+σ̂
γ+σ̂

×

[∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

] σ̂
γ+σ̂

.

The implied allocations for household consumption and individual labor supply are then

log cat (xt, g, k) = D (g, k)− (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + Ca

t

log hit (xt, εt, g, k) = −ϕ̂+
(1− γ)

(σ̂ + γ)
αt +

1

σ̂
εt +Ha

t ,

where ϕ̂ = ϕ/ ((1− τ) (σ̂ + γ)) is the rescaled preference weight,

D (g, k) ≡ log g +
(1− γ)

γ
log

(
g

e (g, k)

)

and

Ha
t = −

γ

σ + τ
Ca
t +

1

σ + τ
log (λ (1− τ)) .

Note that the individual hours allocation is independent of (g, k) , and the household con-

sumption allocation is independent of εt.

B.2 Alternative household model with uninsurable demographics

Utility of a household with g adults and k children is still given by equation (B1). The

island-level components of the individual state are now xt = (a, ϕ, αt, g, k) . The planner can

insure only against realizations of εt. The planner chooses functions ct(xt) and hit (xt, εt)

for i = 1, ..., g to solve

max
ct(xt),{hit(xt,,·)}

{
g

1− γ

(
ct(xt)

e (g, k)

)1−γ

−

g∑

i=1

∫
exp (ϕ)

1 + σ
hit(xt, εt)

1+σ dF a
εt

}

subject to the island-level after-tax resource constraint

ct(xt)−

g∑

i=1

∫
λ [exp (αt + εt)hit (xt, εt)]

1−τ dF a
εt = 0,

where, in light of the result of Section A, we have imposed that consumption is independent

of εt.

11



The first-order conditions with respect to ct(xt) and hit (xt, εt) are, respectively,

g

e (g, k)1−γ ct(xt)
−γ = χt

exp (ϕ) hit (xt, εt)
σ+τ = χtλ (1− τ) exp ((1− τ)αt) exp ((1− τ) εt) .

Combining the two conditions and simplifying terms yields the expression for individual

hours

hit (xt, εt) =

(
g ct(xt)

−γ

e (g, k)1−γ

) 1
σ+τ

(λ (1− τ))
1

σ+τ exp

(
−

ϕ

σ + τ
+

1− τ

σ + τ
αt +

1− τ

σ + τ
εt

)
(B4)

= g
1

σ̂(1−τ) e (g, k)
γ−1

σ̂(1−τ) (λ (1− τ))
1

σ̂(1−τ) exp

(
1

σ̂

(
αt + εt −

ϕ

1− τ

))
ct(xt)

−γ
σ̂(1−τ)

and the expression for household consumption

ct(xt) =

g∑

i∈1

∫
λ [exp (αt + εt)hit (xt, εt)]

1−τ dF a
εt

= g exp ((1− τ)αt)

∫
λ exp ((1− τ) εt) hit (xt, εt)

1−τ dF a
εt

= (g)1+
1−τ
σ+τ e (g, k)(γ−1) 1−τ

σ+τ ct (xt)
− γ(1−τ)

σ+τ exp

(
(1− τ) (1 + σ)

σ + τ
αt −

1− τ

σ + τ
ϕ

)

× (1− τ)
1−τ
σ+τ λ

1+σ
σ+τ

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

Taking logs:
(
1 + γ

1− τ

σ + τ

)
log ct (xt)

=

(
1 +

1− τ

σ + τ

)
log g + (γ − 1)

1− τ

σ + τ
log e (g, k) +

(1− τ) (1 + σ)

σ + τ
αt −

1− τ

σ + τ
ϕ

+
1− τ

σ + τ
log (1− τ) + log

1 + σ

σ + τ
λ+ log

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

and rearranging

log ct (xt) =
σ+τ
1−τ

σ+τ
1−τ

+ γ
log g +

1
σ+τ
1−τ

+ γ
log g −

1− γ
σ+τ
1−τ

+ γ
log e (g, k) +

1 + σ
σ+τ
1−τ

+ γ
αt

−
ϕ

σ+τ
1−τ

+ γ
+

1
σ+τ
1−τ

+ γ
log (1− τ) +

1+σ
1−τ

σ+τ
1−τ

+ γ
log λ

+
σ+τ
1−τ

σ+τ
1−τ

+ γ
log

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt.

Using the σ̂ = (σ + τ) / (1− τ) notation:

log ct (xt) =
1 + σ̂

σ̂ + γ
log g −

1− γ

σ̂ + γ
log e (g, k) +

(1− τ) (1 + σ̂)

σ̂ + γ
αt −

ϕ

σ̂ + γ
+ Ca

t , (B5)
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where Ca
t is defined as

Ca
t ≡

1

σ̂ + γ

[
log (1− τ) + (1 + σ̂) log λ+ σ̂ log

∫
exp

(
(1− τ) (1 + σ̂)

σ̂
εt

)
dF a

εt

]
.

Now substitute the expression for ct (xt) of eq. (B5) into eq. (B4) to derive an expression

for hit (xt, εt),

log hit (xt, εt) =
1

1− τ

1

σ̂
log g +

γ − 1

1− τ

1

σ̂
log e (g, k)−

1

σ̂

ϕ

1− τ
+

1

σ̂
αt

+
1

σ̂
εt +

1

σ̂

1

1− τ
log (λ (1− τ))−

1

σ̂

γ

1− τ
log ct (xt)

=
1

1− τ

1− γ

σ̂ + γ
(log g − log e (g, k)) +

1

σ̂
εt +

1− γ

σ̂ + γ
αt −

1

σ̂ + γ

ϕ

1− τ
+Ha

t ,

where

Ha
t ≡ −

1

σ̂

1

1− τ
log (λ (1− τ))−

1

σ̂

γ

1− τ
Ca
t .

We conclude that household consumption and individual hours are given by

log ct(xt) = Dc (g, k)− (1− τ) ϕ̂+ (1− τ)
1 + σ̂

σ̂ + γ
αt + Ca

t

log hit (xt, εt) = Dh (g, k)− ϕ̂+
1− γ

σ̂ + γ
αt +

εt
σ̂

+Ha
t , i = 1, ..., g

where ϕ̂ = ϕ/ ((1− τ) (σ̂ + γ)) is the rescaled preference weight, and the equivalization

dummies Dc (g, k) and Dh (g, k) are given by

Dc (g, k) =
1 + σ̂

σ̂ + γ
log g −

1− γ

σ̂ + γ
log e (g, k)

Dh (g, k) =
1

1− τ

1− γ

σ̂ + γ
[log g − log e (g, k)] .

To sum up, in this case both household consumption and individual hours depend in general

on the vector of household type (g, k) . In the special case γ = 1 hours are again independent

of (g, k) and consumption is proportional to the number of adults g.
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C Identification

This appendix contains proofs of Propositions 3 and a new Corollary 3.1 that extends Propo-

sition 3 to allow for biannual panel data. Finally, this appendix also contains the additional

identification assumptions made in the estimation of the model (see Section 4.3).

C.1 Proof of Proposition 3

Proposition 3 [identification with no consumption data]With an unbalanced panel

on wages and hours from t = 1, ..., T , and an external estimate of measurement error in

earnings vµy, the same parameters as in Proposition 2 are identified.

Proof The proof is organized in three sequential steps.

1. Given foreknowledge of vµy, we identify σ̂, vµh, and the sequence {vθ,t}
T−1
t=1 off moments

involving (co-)variance of changes minus changes in (co-)variances:

(a) The Frisch elasticity 1/σ̂ is identified by 1/σ̂ equal to

covat (∆ log ŵ,∆ log ĥ) + varat (∆ log ĥ)−∆covat (log ŵ, log ĥ)−∆varat (log ĥ)

covat

(
∆ log ŵ,∆ log ĥ

)
+ varat (∆ log ŵ)−∆covat

(
log ŵ, log ĥ

)
−∆varat (log ŵ)− 2vµy

.

This expression can equivalently be formulated as

1

σ̂
=

covat (∆ log ŷ,∆ log ĥ)−∆covat (log ŷ, log ĥ)

covat (∆ log ŷ,∆ log ŵ)−∆covat (log ŷ, log ŵ)− 2vµy
.

(b) The sequence {vθ,t}
T−1
t=1 is then identified by panel data available from t = 2, ..., T :

covat (∆ log ŵ,∆ log ĥ) + varat (∆ log ĥ)−∆covat (log ŵ, log ĥ)−∆varat (log ĥ)

= 2
(1 + σ̂)

σ̂2
vθ,t−1.

(c) Measurement error in hours is then identified from e.g.

varat

(
∆ log ĥ

)
−∆varat

(
log ĥ

)
=

2

σ̂2
vθ,t−1 + 2vµh.

2. The parameter γ and the two sets of parameters {vηt}
T
t=2 and {vωt}

T
t=2 are then identi-

fied from within-cohort changes in the macro moments, ∆varat (log ŵ) , ∆varat

(
log ĥ

)
,

and ∆covat

(
log ŵ, log ĥ

)
, all available from t = 2, ..., T . These parameters can be iden-

tified recursively as follows:
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3. Combine (24)-(25) to get

(
∆covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt +∆vθt)

)2
(
∆varat

(
log ĥ

)
− 1

σ̂2 (vηt +∆vθt)
) =

(
1−γ
σ̂+γ

)2
(vωt)

2

(
1−γ
σ̂+γ

)2
vωt

= vωt

Combine this with (23) to get an equation in (vηt +∆vθt),

(
∆covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt +∆vθt)

)2
(
∆varat

(
log ĥ

)
− 1

σ̂2 (vηt +∆vθt)
) = ∆varat (log ŵ)− (vηt +∆vθt) .

Therefore, each element of the sequence {vηt +∆vθt}
T
t=2 is identified by4

(vηt +∆vθt) =

(
∆covat

(
log ŵ, log ĥ

))2
−∆varat (log ŵ) ·∆varat

(
log ĥ

)

∆covat (log ŵ,log ĥ)
σ̂

−
∆varat (log ŵ)

σ̂2 −∆varat

(
log ĥ

) ,

which, given {vθ,t}
T−1
t=1 , pins down {vη,t}

T−1
t=2 .

(a) Given vηt +∆vθt, each element of the sequence {vωt}
T
t=2 is identified by (23),

vωt = ∆varat (log ŵ)− (vηt +∆vθt) .

(b) Given vηt +∆vθt and vωt, the risk aversion parameter γ is determined by (25) as

the solution to the following equation:

1− γ

σ̂ + γ
=

∆covat

(
log ŵ, log ĥ

)

vωt
−

1

σ̂

(vηt +∆vθt)

vωt
.

4To see this, note that

(
∆covat

(
log ŵ, log ĥ

)
−

1

σ̂
(vηt +∆vθt)

)2

= (∆varat (log ŵ)− (vηt +∆vθt))

(
∆varat

(
log ĥ

)
−

1

σ̂2
(vηt +∆vθt)

)

(
∆covat

(
log ŵ, log ĥ

))2
−

∆covat

(
log ŵ, log ĥ

)

σ̂
(vηt +∆vθt) +

1

σ̂2
(vηt +∆vθt)

2

= ∆varat (log ŵ) ·∆varat

(
log ĥ

)
−

∆varat (log ŵ)

σ̂2
(vηt +∆vθt)

− (vηt +∆vθt) ·∆varat

(
log ĥ

)
+

1

σ̂2
(vηt +∆vθt)

2
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4. Given values for γ, σ̂, {vθt}
T−1
t=1 and {vµh, vµy}, the following macro moments, available

for all t = 1, ..., T and evaluated for the youngest age group, identify the sequence of

cohort effects {vϕ̂t, vα0t}
T
t=1, {vκ0t}

T
t=2, and (vκ0T + vθT ). We do it in two steps

(a) First, the following two linearly independent macro moments, available for all

t = 1, ..., T and evaluated for the youngest age group, identify the sequence of

cohort effects in insurable- and uninsurable initial wages, {vα0t}
T
t=1, {vκ0t}

T
t=2, and

(vκ0T + vθT ),

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh

cov0t

(
log ŵ, log ĥ

)
=

(
1− γ

σ̂ + γ

)
· vα0t +

1

σ̂
(vκ0t + vθt)− vµh.

(b) Finally, the following macro moments, available for all t = 1, ..., T and evaluated

for the youngest age group, identify the sequence of cohort effects in preference

heterogeneity, {vϕ̂t}
T
t=1,

cov0t

(
log ŵ, log ĥ

)
+ var0t

(
log ĥ

)
= vϕ̂t+

(1− γ) (1 + σ̂)

(σ̂ + γ)2
vα0t+

1 + σ̂

σ̂2
(vκ0t + vθt) ,

since every other parameter in those three moments is already known. This

concludes the proof.

C.2 Extending Proposition 3 to biannual data

It is possible to extend Proposition 3 to allow for biannual panel data towards the end of the

sample, so the proposition can be applied directly to the PSID. This amounts to combining

Proposition 3 with Corollary 2.2. We state this formally as the following corollary.

Corollary 3.1 [extending Proposition 3 to biannual panel data] Suppose

one has access to an unbalanced panel on wages and hours, but no data on consump-

tion. The panel data are available annually until year t̂ and biannually thereafter, i.e.

available for the years t = 1, 2, ..., t̂ and t = t̂ + 2, t̂ + 4, ..., T − 2, T . Suppose further

that one has an exogenous estimate of measurement error in earnings, vµy. Then, one

can identify {σ̂, γ, vµh, vµc} , the sequences {vϕ̂t}
T
t=1 , {vωt, vηt}

t̂
t=2 , {vθt, vκ0t, vα0t}

t̂
t=1, and

{vθt, vκ0t, vα0t, vω,t−1 + vωt, vη,t−1 + vηt} for t = t̂ + 2, t̂ + 4, ..., T − 2, as well as the sums

{vη,T−1 + vη,T + vθ,T} and {vκ0,T + vθ,T}.

Proof Start by following the proof of Proposition 3 for the years t = 1, 2, ..., t̂. Consider
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then the time-varying parameters for the biannual sample, i.e., for t = t̂, t̂+2, t̂+4, ..., T−2, T .

These parameters are identified in five sequential steps.

1. Identify {vθ,t} for the biannual years t = t̂, t̂+2, t̂+4, ..., T − 2, as well as vηt̂ and vκ0t̂,

by combining the following moments,

varat
(
∆2 log ŵ

)
−∆2varat (log ŵ) = 2vθ,t−2 + 2 (vµy + vµh) .

which is available for t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, T . Note that, since vθ,t̂ is identified,

so are vη,t̂ and vκ0t̂.

2. Identify {vηt + vη,t−1} for the biannual years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, and the sum

(vη,T + vη,T−1 + vθT ). Start by combining the biannual versions of (24), (25), and (23)

to get an equation where (vηt + vη,t−1 +∆2vθt) is the only unknown:

(
∆2covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt + vη,t−1 +∆2vθt)

)2

∆2varat

(
log ĥ

)
− 1

σ̂2 (vηt + vη,t−1 +∆2vθt)

=

((
1−γ
σ̂+γ

)
(vωt + vω,t−1)

)2

(
1−γ
σ̂+γ

)2
(vωt + vω,t−1)

= (vωt + vω,t−1)

= ∆2varat (log ŵ)−
(
vηt + vη,t−1 +∆2vθt

)
.

This gives a linear equation in (vηt + vη,t−1 +∆2vθt),

(vηt + vη,t−1 + vθt − vθ,t−2)

=

(
∆2covat

(
log ŵ, log ĥ

))2
−∆2varat (log ŵ) ·∆

2varat

(
log ĥ

)

1
σ̂
·∆2covat

(
log ŵ, log ĥ

)
− 1

σ̂2 ·∆2varat (log ŵ)−∆2varat

(
log ĥ

) .

Since {vθt} is known for the years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, this equation identifies

{vη,t + vη,t−1} for the biannual years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, as well as the sum

(vη,T + vη,T−1 + vθ,T ).

3. Given {vη,t + vη,t−1} for the biannual years t = t̂, t̂ + 2, t̂+ 4, ..., T − 2 and

(vη,T + vη,T−1 + vθ,T ), the sequence of variances of uninsurable shocks {vω,t + vω,t−1}

for the biannual years t = t̂, t̂+ 2, t̂+ 4, ..., T − 2 is identified from the growth in wage

inequality:

∆2varat (log ŵ) = (vωt + vω,t−1) + (vηt + vη,t−1 + vθt)− vθ,t−2.
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4. Consider now the cohort effects {vα0t, vκ0t} for the biannual years t = t̂, t̂ + 2, ..., T .

The uninsurable component vα0t is identified as

(
cov0t

(
log ŵ, log ĥ

)
+ vµh

)
−

1

σ̂

(
var0t (log ŵ)− (vµy + vµh)

)

=
1− γ

σ̂ + γ
vα0t +

1

σ̂
(vκ0t + vθt)−

1

σ̂
(vα0t + (vκ0t + vθt))

=

(
1− γ

σ̂ + γ
−

1

σ̂

)
vα0t,

which is available for t = t̂, t̂ + 2, ..., T . The wage inequality for new cohorts then

identify the variance of the insurable cohort effect {vκ0,t}:

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh,

which is available for t = t̂, t̂ + 2, ..., T − 2 since the other components on the right-

hand side are known those years. For the final year t = T we can only identify the

sum (vκ0,T + vθT ).

5. Finally, the cohort effects {vϕ̂,t}
T
t=t̂ are identified by

var0t

(
log ĥ

)
= vϕ̂t +

(
1− γ

σ̂ + γ

)2

vα0t +
1

σ̂2
(vκ0t + vθt) + vµh

for the biannual years t = t̂, t̂+ 2, ..., T , and by

var1t

(
log ĥ

)
= vϕ̂,t−1 +

(
1− γ

σ̂ + γ

)2

(vα0,t−1 + vωt) +
1

σ̂2
(vκ0,t−1 + vηt + vθt) + vµh,

available at t = t̂, t̂+ 2, ..., T − 2, T , to identify {vϕ̂,t}
T
t=t̂ in the in-between years.

D Test of model specification

Recall the notation of Section 4.3 of the paper. Λ is an N × 1 vector of parameters of the

model, m(Λ) is a J × 1 vector of theoretical moments and m̂ is a J × 1 vector of empirical

moments from the data. The null hypothesis we want to test is that the model is “correctly”

specified. For this purpose, we construct the Sargan test-statistic

T = (m̂−m(Λ̂))′V̂−1(m̂−m(Λ̂))

which, under the null hypothesis, is distributed as a χ2
J−N .
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V̂ is a consistent estimate of the fourth moments matrix. To make things concrete, we

give an example of an element of V̂. The second moments used in estimation are of form

cov(xi
a,t, y

i
a,t). Consider two such moments from the PSID, for example cov(wi

22,1990, h
i
22,1990)

and var(∆wi
26,1994). The corresponding entry in V̂ is computed as follows, whereK is number

of individuals with non-missing observations in the age/year cells needed to compute this

entry:

1

K

K∑

i=1

[
wi

22,1990h
i
22,1990 − cov(wi

22,1990, h
i
22,1990)

]
×
[(
∆wi

26,1994

)2
− var(∆wi

26,1994)
]
.

In the baseline model, N = 164 and J = 11, 532. The test statistic implies a p−value of

0.9991.

In the context of GMM estimation with dynamic panel data, it is known that overiden-

tifying restrictions (OID) tests can have low power when the number of moment conditions

is large relative to the number of observations used to calculate the empirical moments.

Bowsher (2002) offers compelling evidence based on Monte Carlo experiments. The issue

associated with the use of too many moments is attributed to the need to estimate J(J+1)/2

separate entries of the fourth moment matrix when J moment conditions are used. Intu-

itively, if this dimensionality is large relative to the sample size, the estimates of the V

matrix may be poor. In the baseline case, J −N is equal to 11, 368 and is therefore an order

of magnitude larger than the average number of observations per moment. One may worry

that the power of the T statistic is artificially low and the test result not too informative.

Bowsher (2002) and Roodman (2009) propose a method to restore power to the Sargan

test. This method consists of testing the validity of a reduced number of moment conditions;

the full set of moments is still used in estimation but a subset of moments is used in the

construction of the test-statistic. For our purposes, one way of collapsing the number of mo-

ment conditions used in the test is to consider covariances by age and by year. For example,

instead of using the A× T covariances {cov(wi
a,t, h

i
a,t)}a=1,...A,t=1,...T , we restrict ourselves to

just A + T covariances: {cov(wi
a, h

i
a)}a=1,...A and {cov(wi

t, h
i
t)}t=1,...T . And similarly, for all

other moments. Doing so reduces the number of degrees of freedom from 11, 368 to 580 and

increases the mean number of observations per moment from 285 to 8, 291 for PSID and from

179 to 5, 318. Therefore, the source of low power of the OID test should be much weaker

under this “collapsed moments” version of the test. The test continues to yield a p−value

above 0.99, failing to reject the null.
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E Model Estimation: Additional Figures and Tables
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Figure E1: Estimation without CEX data. Data and model fit for moments in levels along
the age dimension. Dotted lines denote 90–10 bootstrapped confidence intervals for the
empirical moments.
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Figure E2: Estimation without CEX data. Data and model fit for moments in levels along
the time dimension. Dotted lines denote 90–10 bootstrapped confidence intervals for the
empirical moments.
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Figure E3: Comparison between (i) the baseline estimates for the variances of the insurable
(vηt) and uninsurable (vωt) innovations modeled as time-polynomials and (ii) estimates for
the same variances modeled as unrestricted sequences.
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Table E1: Parameter Estimates: Baseline Model

vα0t vκ0t vϕ̂t vωt vηt vθt
1967 0.136 0.029 0.045 0.0008 0.0014 0.027

(0.020) (0.020) (0.009) (0.0005) (0.0010) (0.005)
1968 0.001 0.000 0.089 0.0008 0.0029 0.010

(0.019) (0.003) (0.025) (0.0004) (0.0007) (0.003)
1969 0.037 0.001 0.054 0.0009 0.0042 0.011

(0.026) (0.008) (0.013) (0.0005) (0.0008) (0.003)
1970 0.140 0.000 0.049 0.0011 0.0053 0.018

(0.037) (0.003) (0.015) (0.0006) (0.0009) (0.003)
1971 0.156 0.000 0.049 0.0013 0.0063 0.013

(0.047) (0.010) (0.014) (0.0007) (0.0010) (0.003)
1972 0.133 0.003 0.051 0.0017 0.0070 0.017

(0.034) (0.015) (0.013) (0.0008) (0.0010) (0.003)
1973 0.001 0.001 0.055 0.0020 0.0076 0.021

(0.010) (0.008) (0.019) (0.0009) (0.0010) (0.003)
1974 0.047 0.138 0.059 0.0024 0.0081 0.025

(0.034) (0.047) (0.013) (0.0009) (0.0010) (0.004)
1975 0.150 0.014 0.058 0.0028 0.0084 0.022

(0.034) (0.015) (0.014) (0.0009) (0.0010) (0.004)
1976 0.152 0.052 0.036 0.0032 0.0086 0.029

(0.032) (0.031) (0.013) (0.0008) (0.0010) (0.004)
1977 0.089 0.000 0.039 0.0037 0.0087 0.023

(0.030) (0.012) (0.011) (0.0008) (0.0010) (0.004)
1978 0.008 0.044 0.055 0.0041 0.0086 0.018

(0.014) (0.025) (0.019) (0.0008) (0.0010) (0.003)
1979 0.038 0.080 0.070 0.0045 0.0085 0.025

(0.030) (0.029) (0.016) (0.0007) (0.0010) (0.004)
1980 0.068 0.016 0.052 0.0049 0.0083 0.019

(0.030) (0.014) (0.013) (0.0007) (0.0010) (0.004)
1981 0.143 0.030 0.046 0.0053 0.0080 0.021

(0.029) (0.020) (0.014) (0.0007) (0.0011) (0.003)
1982 0.152 0.040 0.042 0.0056 0.0076 0.023

(0.029) (0.024) (0.011) (0.0007) (0.0011) (0.004)
1983 0.115 0.054 0.047 0.0059 0.0072 0.031

(0.019) (0.031) (0.018) (0.0007) (0.0011) (0.005)
1984 0.037 0.102 0.051 0.0062 0.0067 0.035

(0.029) (0.036) (0.012) (0.0007) (0.0011) (0.005)
1985 0.068 0.070 0.058 0.0065 0.0062 0.036

(0.030) (0.030) (0.013) (0.0006) (0.0011) (0.004)
1986 0.136 0.097 0.050 0.0067 0.0057 0.034

(0.028) (0.032) (0.014) (0.0006) (0.0011) (0.005)
1987 0.149 0.078 0.051 0.0069 0.0051 0.034

(0.020) (0.028) (0.013) (0.0006) (0.0010) (0.004)
1988 0.105 0.044 0.056 0.0071 0.0046 0.036

(0.020) (0.027) (0.020) (0.0005) (0.0010) (0.005)
1989 0.053 0.098 0.062 0.0072 0.0040 0.033

(0.029) (0.035) (0.013) (0.0005) (0.0009) (0.004)

Note: Bootstrapped standard errors based on 500 replications in parenthesis.

23



Table E1: (Continued) Parameter Estimates: Baseline Model

vα0t vκ0t vϕ̂t vωt vηt vθt
1990 0.057 0.078 0.039 0.0073 0.0034 0.036

(0.028) (0.030) (0.011) (0.0005) (0.0009) (0.005)
1991 0.138 0.077 0.055 0.0074 0.0029 0.042

(0.028) (0.033) (0.013) (0.0005) (0.0008) (0.005)
1992 0.152 0.000 0.048 0.0074 0.0024 0.075

(0.032) (0.030) (0.013) (0.0005) (0.0008) (0.007)
1993 0.058 0.071 0.038 0.0074 0.0019 0.072

(0.022) (0.029) (0.017) (0.0005) (0.0008) (0.006)
1994 0.071 0.027 0.040 0.0075 0.0015 0.061

(0.031) (0.022) (0.012) (0.0006) (0.0008) (0.007)
1995 0.182 0.059 0.057 0.0075 0.0012 0.051

(0.033) (0.029) (0.017) (0.0007) (0.0009) (0.006)
1996 0.160 0.063 0.051 0.0075 0.0009 0.052

(0.031) (0.032) (0.016) (0.0007) (0.0009) (0.006)
1997 0.180 0.154 0.062 0.0075 0.0007 0.055

(0.035) (0.019) (0.016) (0.0008) (0.0009) (0.004)
1998 0.024 0.044 0.060 0.0075 0.0005 0.059

(0.025) (0.022) (0.022) (0.0008) (0.0009) (0.007)
1999 0.134 0.036 0.057 0.0076 0.0005 0.066

(0.037) (0.016) (0.015) (0.0008) (0.0010) (0.005)
2000 0.154 0.029 0.063 0.0077 0.0006 0.074

(0.032) (0.023) (0.018) (0.0008) (0.0011) (0.008)
2001 0.129 0.031 0.067 0.0079 0.0007 0.091

(0.033) (0.018) (0.018) (0.0008) (0.0013) (0.008)
2002 0.188 0.033 0.068 0.0081 0.0011 0.107

(0.035) (0.022) (0.017) (0.0009) (0.0016) (0.011)
2003 0.047 0.057 0.061 0.0084 0.0015 0.101

(0.029) (0.018) (0.022) (0.0010) (0.0020) (0.008)
2004 0.098 0.060 0.053 0.0087 0.0021 0.094

(0.039) (0.028) (0.024) (0.0013) (0.0025) (0.009)
2005 0.030 0.084 0.085 0.0092 0.0028 0.066

(0.040) (0.027) (0.027) (0.0018) (0.0034) (0.008)
2006 0.123 0.109 0.048 0.0098 0.0037 0.037

(0.039) (0.028) (0.014) (0.0023) (0.0045) (0.013)

Note: Bootstrapped standard errors based on 500 replications in parenthesis.
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