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This Technical Appendix is organized as follows. Section A contains an extended proof

of Proposition 1 (existence of no-trade competitive equilibrium and characterization of equi-

librium allocations, asset prices and asset purchases). Section B develops in detail the

two household models discussed in Section 3.1 of the paper which provide a foundation for

equivalizing the data. Section C contains identification proofs for Proposition 3 (when con-

sumption data are not available) and an extension for the case where data are biannual.

Section D states the additional identifying assumption about end-points we make in the

estimation of the model.

A Extended Proof of Proposition 1

The proof is in two parts. In the first part we describe a planner’s problem, and show

that the allocations for consumption and hours described in Proposition 1, part (ii) are

the solution to this problem. In the second part, we decentralize these allocations in a

competitive equilibrium, and show that the asset prices described in Proposition 1, part (iii)

1



and the no-inter-island-trade result described in part (i) form part of this decentralization.

Planner’s Problem (allocations): We first solve for equilibrium allocations for con-

sumption and hours worked by solving a set of static planning problems. Each island-level

planner maximizes equally weighted period utility for a set of agents that share a common

age a, a common preference weight ϕ, and a common wage component αt. Let xt = (a, ϕ, αt)

denote these island-level components of the individual state. Each island-level planner con-

trols a set of agents with the age-specific population distributions F a
κ,t and Fθ,t. Let F a

ε,t

denote the implied age-specific distribution over εt = κt + θt. The planner’s problem on an

island defined by xt is to choose functions ct(xt, εt), ht(xt, εt) to solve

max
{ct(xt,·),ht(xt,·)}

∫ [
ct(xt, εt)

1−γ − 1

1− γ
− exp (ϕ)

ht(xt, εt)
1+σ

1 + σ

]
dF a

ε,t

subject to the island-level resource constraint
∫ [

λ (exp (αt + εt)ht(xt, εt))
1−τ − ct(xt, εt)

]
dF a

ε,t = 0.

The first-order conditions with respect to ct(xt, εt) and ht(xt, εt) are, respectively,

ct(xt, εt)
−γ = χt(xt),

exp (ϕ)ht(xt, εt)
σ = χt(xt)λ exp (αt(1− τ)) exp (εt(1− τ)) (1− τ)ht(xt, εt)

−τ ,

where χt(xt) is the multiplier on the date t resource constraint. Note that ct(xt, εt) =

χt(xt)
− 1

γ , and thus does consumption does not depend on εt. Combining the two FOCs

gives

ht(xt, εt) = ((1− τ)λ)
1

σ+τ ct(xt)
− γ

σ+τ exp

(
1− τ

σ + τ
(αt + εt)− 1

σ + τ
− ϕ

σ + τ

)
. (A1)

Substituting (A1) into the resource constraint gives

ct(xt, εt) = λ((1− τ)λ)
1−τ
σ+τ exp (αt(1− τ)) ct(xt, εt)

− γ(1−τ)
σ+τ exp

(
−1− τ

σ + τ

)

× exp

(
−ϕ(1− τ)

σ + τ
+ αt

(1− τ)2

σ + τ

)∫
exp ((1− τ)εt) exp

(
(1− τ)2

σ + τ
εt

)
dF a

εt.

Taking logs and simplifying yields

log ct(xt, εt)

=
1 + σ

σ + τ + γ(1− τ)
log λ+

1− τ

σ + τ + γ(1− τ)
log(1− τ)− 1− τ

σ + τ + γ(1− τ)
ϕ

+
(1− τ) (1 + σ)

σ + τ + γ (1− τ)
αt +

σ + τ

σ + τ + γ(1− τ)
log

∫
exp

(
(1− τ)(1 + σ)

σ + τ
εt

)
dF a

εt.
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By using the definition for the tax-modified Frisch elasticity σ̂ = (σ + τ)/(1− τ), the above

expression simplifies to:

log ct(xt, εt) = − ϕ

σ̂ + γ
+

(1− τ) (1 + σ̂)

σ̂ + γ
αt + Ca

t (A2)

which is the expression in Proposition 1, part (ii), where Ca
t is a constant common to all

agents of age a in year t given by

Ca
t =

1

σ̂ + γ
((1 + σ̂) log λ+ log(1− τ)) +Ma

t ,

Ma
t =

σ̂

σ̂ + γ
log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt

)
dF a

ε,t.

Note that if we were to assume, for example, that log εat ∼ N
(
−vaεt

2
, vaεt

)
, then we could solve

out the integral in the expression for Ma
t :

Ma
t =

1

σ̂ + γ

(
(1− τ)(1 + σ̂)

σ̂
(1− τ (1 + σ̂))

vεt
2

)
.

We now substitute the expression for log ct(xt, εt) in (A2) into (A1) to solve for log ht(xt, εt) :

log ht(xt, εt) = − 1

(1− τ) (σ̂ + γ)
ϕ+

(
1− γ

σ̂ + γ

)
αt +

1

σ̂
εt +Ha

t

which is the expression in Proposition 1, part (ii), where

Ha
t ≡

1

(1− τ) (σ̂ + γ)
((1− γ) log λ+ log(1− τ))− γ

σ̂(1− τ)
Ma

t .

Decentralization (prices): We now turn to the second part of the proof of Proposi-

tion 1, namely the decentralization of the solution to the above planner’s problem. We begin

by conjecturing prices in this equilibrium. We set pre-tax wages equal to individual labor

productivity:

wt(xt, εt) = exp(αt + εt).

At this wage, the intratemporal FOC from the agent’s problem (2.1) described in the main

text is identical to the intratemporal FOC for the planner described in eq.(A1). Thus at

competitive wages and the conjectured allocations (eqs. 7 and 8) agents are optimizing on

the intratemporal margin. At first blush this might seem surprising, given the presence of

progressive earnings taxation in the economy. Recall, however, that individual agents (in

the competitive equilibrium) and island-level planners (in the problem described above) are

atomistic and hence both take the tax system parameters as exogenous.

3



We next conjecture equilibrium prices for intertemporal insurance claims. At this point

it is convenient to revert to history-dependent notation, so we will write ct(s
t) rather than

ct(xt, εt). We begin with the price of within-island insurance Qt (S; s
t) . The intertemporal

FOC from the agent’s problem (2.1) defines the price at which an agent of age a with history

st is willing, on the margin, to buy or sell a set of insurance contracts Bt(S; s
t) that pay δ−1

units of consumption if and only if st+1 = (ωt+1, ηt+1, θt+1) ∈ S ⊆ S. This price is simply the

average marginal rate of substitution in those states:2

Qt

(
S; st

)
= βδδ−1

∫

S

ct+1(s
t, st+1)

−γ

ct(st)−γ
dFs,t+1. (A3)

Substituting in the expression for consumption (A2) we have

Qt

(
S; st

)
= β exp

(−γ
(Ca+1

t+1 − Ca
t

)) ∫

S

exp

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
ωt+1

)
dFs,t+1, (A4)

which is the expression in Proposition 1, part (iii), where Ca
t is defined above, and

Ca+1
t+1 − Ca

t =
σ̂

σ̂ + γ

[
log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt+1

)
dF a+1

ε,t+1 − log

∫
exp

(
(1− τ)(1 + σ̂)

σ̂
εt

)
dF a

ε,t

]

=
σ̂

σ̂ + γ
log



∫
exp

(
(1−τ)(1+σ̂)

σ̂
ηt+1

)
dFη,t+1

∫
exp

(
(1−τ)(1+σ̂)

σ̂
θt+1

)
dFθ,t+1

∫
exp

(
(1−τ)(1+σ̂)

σ̂
θt

)
dFθ,t




is independent of a. Thus the prices Qt(S; s
t) are consistent with optimization on the

consumer side.

Note that Qt (S; s
t) = Qt(S) : insurance prices are independent of the individual history

st and age a. From eq. (A4) there are two pieces to this result. First, Fs,t+1, the joint

distribution over st+1 = (ωt+1, ηt+1, θt+1) at t + 1, is independent of st and thus the second

term in eq. (A4) is independent of st. Second, insurance prices are also independent of age

a, because while average consumption Ca
t is age-dependent, growth in average consumption

Ca+1
t+1 − Ca

t is independent of age, reflecting the permanent-transitory model for individual

productivity dynamics. Note also that the price of insurance against ηt+1 and θt+1 simply

reflects probabilities, while the price of insurance against ωt+1 also reflects the conditional

marginal rate of substitution, with insurance against low ωt+1 realizations being more ex-

pensive than equally likely high ωt+1 realizations. This asymmetry reflects the fact that ηt+1

2Note that the agent effectively discounts at rate βδ, while mortality insurance ensures payment of δ−1

units of consumption in the event that the agent survives to the next period and st+1 ∈ S.
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and θt+1 are perfectly insured in equilibrium, while ωt+1 remains uninsured. The price of a

risk-free bond Qt (S) is

Qt

(
S; st

)
= β exp

(−γ
(Ca+1

t+1 − Ca
t

)) ∫

S
exp

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
ωt+1

)
dFs,t+1 = Qt (S) .

We now turn to the price function for insurance claims traded across islands. Because

any contract that can be traded between islands can also be traded within an island, the

inter-island price for a claim that pays δ−1 units of consumption iff st+1 ∈ Z must, by

arbitrage, equal the corresponding within-island price, for any Z. This implies

Q∗
t

(
Z; st

)
= Pr ((ηt+1, θt+1) ∈ Z)×Qt(S) = Q∗

t (Z) .

Thus these prices are just probabilities times the price of a risk-free bond.3

Assuming log-normal distributions for ωt+1, ηt+1 and θt+1 allows us to solve out the

integral in the expression for the risk-free rate Qt(S). In this case,

Ca+1
t+1 − Ca

t =
(1− τ)(1 + σ̂) (1− τ (1 + σ̂))

(σ̂ + γ) σ̂

(
vη,t+1 + vθ,t+1 − vθ,t

2

)

and thus

Qt (S) = β exp

(
−γ

(1− τ)(1 + σ̂) (1− τ (1 + σ̂))

(σ̂ + γ) σ̂

(
vη,t+1 + vθ,t+1 − vθ,t

2

))

× exp

(
−γ(1− τ)

1 + σ̂

σ̂ + γ

(
−γ(1− τ)

1 + σ̂

σ̂ + γ
− 1

)
vω,t+1

2

)
. (A5)

Expression (10) in the main text is a special case when τ = 0.

Decentralization (asset purchases): We now derive expressions for insurance con-

tract purchases, Bt(st+1; s
t) and B∗

t (ηt+1, θt+1; s
t) and verify that, given all conjectured prices

and quantities, agents’ budget constraints are satisfied.

Given that any available inter-island insurance contract can be purchased at the same

price on the within-island market, B∗
t (ηt+1, θt+1; s

t) = 0 for all (ηt+1, θt+1) is consistent with

individual optimization (Proposition 1, part (iii)). Thus, agents optimize when purchasing

all their insurance on the island on which they are located. At the same time, because

Q∗
t (Z; s

t) = Q∗
t (Z) , no agent has an incentive to try to sell insurance to an agent located on

another island. To understand this, note that the price at which one agent (say agent i1) with

3If we allowed insurance contracts to be traded across islands contingent on ωt+1 then agents would pool
ωt+1 risk and insurance prices would be Pr ((ωt+1, ηt+1, θt+1) ∈ S)× β 6= Qt (S) .
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history sti1 is willing to buy, on the margin, a set of claims that pay if and only if (ηt+1, θt+1) ∈
Z is the probability of that event times agent i1’s expected marginal rate of substitution, i.e.

Pr ((ηt+1, θt+1) ∈ Z) × Qt

(
S; sti1

)
. The price at which a second agent on a different island

(agent i2 with history sti2) is willing to sell this insurance to agent i1 is the same probability

times agent i2’s expected marginal rate of substitution, Pr ((ηt+1, θt+1) ∈ Z)×Qt

(
S; sti2

)
. If

agents i1 and i2 did not share the same marginal rate of substitution (i.e., if Qt

(
S; sti1

) 6=
Qt

(
S; sti2

)
), then there could be no equilibrium without inter-island trade, because any such

equilibrium would feature unexploited gains from trade. Thus Qt(S, st) = Qt(S) is the crucial
result supporting an absence of inter-island trade.

Finally, we now derive an expression for purchases of state-contingent claims, Bt(st+1; s
t),

and verify budget balance. Given B∗
t (Z; s

t) = 0 ∀Z, ∀st, realized wealth at st implicitly

defines insurance purchases:

Bt−1(st; s
t−1) = δdt(s

t).

We will now guess and verify the following solution for dt(s
t) :

dt(s
t) = d̂t

(
st
)
+ Tt

(
st
)

where

Tt

(
st
)

= ct
(
st
)− λ

(
wt

(
st
)
ht

(
st
))1−τ

,

d̂t
(
st
)

= E
st

[ ∞∑
j=1

(βδ)j ct+j(s
t+j)−γ

ct(st)−γ
Tt+j (st+j)

]
.

The logic for this guess is that insurance payouts must deliver the appropriately discounted

present value of lifetime differences between consumption and after-tax earnings.

We now need to check that the agent’s budget constraint is satisfied. Given B∗
t (Z; s

t) = 0

∀Z, ∀st this amounts to checking that

ct
(
st
)
+

∫ ∫ ∫
Qt (ω, η, θ) Bt

(
(ω, η, θ) ; st

)
dω dη dθ = λ

(
wt

(
st
)
ht

(
st
))1−τ

+d̂t
(
st
)
+Tt

(
st
)
.

Given the conjecture for T (st) this simplifies to

∫ ∫ ∫
Qt (ω, η, θ) Bt

(
(ω, η, θ) ; st

)
dω dη dθ = d̂t

(
st
)
. (A6)

To verify that this equation is in fact satisfied, we will write the functions Qt (ω, η, θ) ,

Bt ((ω, η, θ) ; s
t) and d̂t (s

t) all in terms of the decision rule for consumption ct (s
t) . The ratio
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of after-tax earnings to consumption is

λ (wt (s
t)ht (s

t))
1−τ

ct (st)
= exp

(
(1− τ)

1 + σ̂

σ̂
εt − γ + σ̂

σ̂
Ma

t

)
,

so

Tt

(
st
)

=

(
1− exp

(
(1− τ)

1 + σ̂

σ̂
(κt + θt)− γ + σ̂

σ̂
Ma

t

))
ct
(
st
)

= ct(s
t)

(
1− exp

(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
∫ ∫

exp
(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ,t

)
,

where the second line uses

Ma
t =

σ̂

σ̂ + γ
log

∫ ∫
exp

(
(1− τ)

1 + σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ.t.

Substituting the definition for Tt+j (st+j) into the one for d̂t (s
t), and multiplying and dividing

by ct(s
t), gives

d̂t
(
st
)

= ct(s
t)Est

[ ∞∑
j=1

(βδ)j ct+j(s
t+j)−γ

ct(st)−γ

ct+j(s
t+j)

ct(st)
×

×
(
1− exp

(
(1− τ)

1 + σ̂

σ̂

(
κt +

j∑
i=1

ηt+i + θt+j

)
− γ + σ̂

σ̂
Ma+j

t+j

))]

= ct(s
t)Est

[ ∞∑
j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ
×

×

1−

exp
(
(1− τ)1+σ̂

σ̂

(
κt +

∑j
i=1 ηt+i + θt+j

))

∫
....

∫
exp

(
(1− τ)1+σ̂

σ̂

(
κt +

∑j
i=1 ηt+i + θt+j

))
dF a

κ,t dFη,t+1 ... dFη,t+j dFθ,t+j






= ct(s
t)

(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[∑∞
j=1 (βδ)

j ct+j(s
t+j)1−γ

ct(st)1−γ

]
, (A7)

where the second equation uses

Ma+j
t+j =

σ̂

σ̂ + γ
log

∫
....

∫
exp

(
(1− τ)

1 + σ̂

σ̂

(
κt +

j∑
i=1

ηt+i + θt+j

))
dF a

κ,t dFη,t+1 ... dFη,t+j dFθ,t+j.
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Thus

Bt−1((ωt, ηt, θt) ; s
t−1) (A8)

= δ
(
d̂t
(
st
)
+ Tt

(
st
))

= δct(s
t)

(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[ ∞∑
j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ

]

+δct(s
t)

(
1− exp

(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
∫
exp

(
(1− τ)1+σ̂

σ̂
(κt + θt)

)
dF a

κ,tdFθ,t

)
.

Substituting eq. (A7) and eq. (A3) into eq. (A6) gives

βct
(
st
)γ Est

[
ct+1(s

t, st+1)
−γ Bt

(
st+1; s

t
)]

(A9)

= ct
(
st
)
(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[ ∞∑
j=1

(βδ)j ct+j(s
t+j)1−γ

ct(st)1−γ

]
.

Let LHS(st) denote the left-hand side of eq. (A9), substitute in eq. (A8) and simplify

LHS(st) = βct
(
st
)γ Est

[
ct+1(s

t, st+1)
−γ δct+1(s

t+1)×

×
{(

1− exp
(
(1− τ)1+σ̂

σ̂
κt+1

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt+1

)
dF a+1

κ,t+1

)
Est+1

[ ∞∑
j=1

(βδ)j ct+1+j(s
t+1+j)1−γ

ct+1(st+1)1−γ

]
+

+

(
1− exp

(
(1− τ)1+σ̂

σ̂
(κt+1 + θt+1)

)
∫
exp

(
(1− τ)1+σ̂

σ̂
(κt+1 + θt+1)

)
dF a+1

κ,t+1dFθ,t+1

)}]

= βδct
(
st
)γ Est

[
ct+1(s

t, st+1)
1−γ×

×
{(

1− exp
(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est+1

[ ∞∑
j=1

(βδ)j ct+1+j(s
t+1+j)1−γ

ct+1(st+1)1−γ

]
+

+

(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)}]

= βδct
(
st
)γ

(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[
Est+1

[ ∞∑

k=1

(βδ)k−1 ct+k(s
t+k)1−γ

]]

= ct
(
st
)
(
1− exp

(
(1− τ)1+σ̂

σ̂
κt

)
∫
exp

(
(1− τ)1+σ̂

σ̂
κt

)
dF a

κ,t

)
Est

[ ∞∑

k=1

(βδ)k
ct+k(s

t+k)1−γ

ct (st)
1−γ

]
,

which is the same as the right-hand side of eq. (A9). We conclude that the budget constraint

is satisfied when state-contingent bond purchases are given by eq. (A8).

8



B Household Models

We begin with the household model of Section 3 where household composition is insurable

(an abbreviated version is contained in Appendix A.2). Next, we present the alternative

model, also briefly discussed in Section 3, where demographics are uninsurable.

B.1 The household model of Section 3

Suppose that utility for individual i in a household of g adult workers (“g” for “grownups”)

and k children (“k” for kids) is given by

u(c, hi, g, k) =
1

1− γ

(
c

e(g, k)

)1−γ

− exp (ϕ)

1 + σ
h1+σ
i ,

where c is household consumption and hi is i’s hours worked. The equivalence scale is given

by e and satisfies eg ∈ (0, 1], egg < 0, ek ∈ (0, 1], and e (1, 0) = 1 for all g ≥ 1 and k ≥ 0.

Assume that the household utility function attaches equal weights to all adults (and no

weight to the children), so total utility is given by

U =

g∑
i=1

u(c, hi, g) =
g

1− γ

(
c

e(g, k)

)1−γ

−
g∑

i=1

(
exp (ϕ)

1 + σ
h1+σ
i

)
(B10)

As in Section A, let xt = (a, ϕ, αt) denote the island-level components of the individual

state. Each island-level planner can insure realizations of εt, g, and k. The planner’s problem

is to choose functions ct(xt, g, k), hit(xt, εt, g, k) for i = 1, ..., g to solve

max
{c(xt,·),hit(xt,·)}

∫ [
g

1− γ

(
ct(xt, g, k)

e (g, k)

)1−γ

−
g∑

i=1

∫
exp ((γ + σ)ϕ)

1 + σ
hit(xt, εt, g, k)

1+σ dF a
εt

]
dFt (g, k)

subject to the after-tax resource constraint

∫ [
g∑

i=1

∫
λ [exp (αt + εit)hit (xt, εt, g, k)]

1−τ dF a
εt − ct(xt, g, k)

]
dFt (g, k) = 0,

where the objective function and the constraint recognize that there is a non-degenerate

within-island distribution Ft (g, k) of household workers and children. Moreover, in light of

the result of Section A, we have imposed that consumption is independent of εt.

The first-order conditions with respect to ct(xt, g, k) and hit(xt, εt, g, k) are, respectively,

ge (g, k)γ−1 ct(xt, g, k)
−γ = χt (B11)

exp (ϕ)hit(xt, εt, g, k)
σ+τ = χtλ (1− τ) exp ((1− τ)αt) exp ((1− τ) εt) , (B12)
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where χt is the multiplier on the date t island-level resource constraint.

Let ct(xt, 1, 0) denote household consumption for a one-person household. Then equation

(B11) implies

ct (xt, g, k) = ct(xt, 1, 0)

(
g

e (g, k)1−γ

) 1
γ

.

Combining the two first-order conditions (B11)-(B12) gives

hit(xt, εt, g, k) =

(
gct(xt, g, k)

−γ

e (g, k)1−γ

) 1
σ+τ

(λ (1− τ))
1

σ+τ exp

(
− ϕ

σ + τ
+

(
1− τ

σ + τ

)
αt +

(
1− τ

σ + τ

)
εt

)
.

Substitute in the consumption expression for the one-person households:

hit = ct(xt, 1, 0)
− γ

σ+τ (λ (1− τ))
1

σ+τ exp

(
− ϕ

σ + τ
+

(
1− τ

σ + τ

)
αt +

(
1− τ

σ + τ

)
εt

)
,

so individual hours are insensitive to household size.

Finally we can solve for ct(xt, 1, 0) from the island resource constraint:

0 =

∫ {
g∑

i=1

∫
λ [exp (αt + εt)hit (xt, εt, g, k)]

1−τ dF a
εt − ct(xt, g, k)

}
dFt (g, k)

=

∫ {
g∑

i=1

∫ ∫
λ
[
exp (αt + κit + θit) ct(xt, 1, 0)

− γ
σ+τ (λ (1− τ))

1
σ+τ

× exp

(
− ϕ

σ + τ
+

1− τ

σ + τ
αt +

(
1− τ

σ + τ

)
εt

)]1−τ

dF a
εt

−ct(xt, 1, 0)

(
g

e (g, k)1−γ

) 1
γ

}
dFt (g, k) .

Collecting terms:

ct(xt, 1, 0)
1+( 1−τ

σ+τ )γ

= ḡ exp

(
(1− τ) (1 + σ)

σ + τ
αt − 1− τ

σ + τ
ϕ

)
×

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

× (1− τ)
1−τ
σ+τ (λ)

1+σ
σ+τ

(∫ (
g

e (g, k)1−γ

) 1
γ

dFt (g, k)

)−1

,

where ḡ =
∫
g dFt (g, k). Substitute out for σ̂ = (σ + τ) / (1− τ) and simplify the expression

as:

log ct(xt, 1, 0) = (1− τ)
1 + σ̂

γ + σ̂
αt − ϕ

γ + σ̂
+ Ca

t ,

10



where the constant Ca
t is defined as

exp Ca
t = (ḡ)

σ̂
γ+σ̂

(∫ (
g

e (g, k)1−γ

) 1
γ

dFt (g, k)

)− σ̂
γ+σ̂

(1− τ)
1

γ+σ̂ (λ)
1+σ̂
γ+σ̂

×
[∫

exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

] σ̂
γ+σ̂

.

The implied allocations for household consumption and individual labor supply are then

log cat (xt, g, k) = D (g, k)− (1− τ) ϕ̂+ (1− τ)

(
1 + σ̂

σ̂ + γ

)
αt + Ca

t

log hit (xt, εt, g, k) = −ϕ̂+
(1− γ)

(σ̂ + γ)
αt +

1

σ̂
εt +Ha

t ,

where ϕ̂ = ϕ/ ((1− τ) (σ̂ + γ)) is the rescaled preference weight,

D (g, k) ≡ log g +
(1− γ)

γ
log

(
g

e (g, k)

)

and

Ha
t = − γ

σ + τ
Ca
t +

1

σ + τ
log (λ (1− τ)) .

Note that the individual hours allocation is independent of (g, k) , and the household con-

sumption allocation is independent of εt.

B.2 Alternative household model with uninsurable demographics

Utility of a household with g adults and k children is still given by equation (B10). The

island-level components of the individual state are now xt = (a, ϕ, αt, g, k) . The planner can

insure only against realizations of εt. The planner chooses functions ct(xt) and hit (xt, εt)

for i = 1, ..., g to solve

max
ct(xt),{hit(xt,,·)}

{
g

1− γ

(
ct(xt)

e (g, k)

)1−γ

−
g∑

i=1

∫
exp (ϕ)

1 + σ
hit(xt, εt)

1+σ dF a
εt

}

subject to the island-level after-tax resource constraint

ct(xt)−
g∑

i=1

∫
λ [exp (αt + εt)hit (xt, εt)]

1−τ dF a
εt = 0,

where, in light of the result of Section A, we have imposed that consumption is independent

of εt.
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The first-order conditions with respect to ct(xt) and hit (xt, εt) are, respectively,

g

e (g, k)1−γ ct(xt)
−γ = χt

exp (ϕ)hit (xt, εt)
σ+τ = χtλ (1− τ) exp ((1− τ)αt) exp ((1− τ) εt) .

Combining the two conditions and simplifying terms yields the expression for individual

hours

hit (xt, εt) =

(
g ct(xt)

−γ

e (g, k)1−γ

) 1
σ+τ

(λ (1− τ))
1

σ+τ exp

(
− ϕ

σ + τ
+

1− τ

σ + τ
αt +

1− τ

σ + τ
εt

)
(B13)

= g
1

σ̂(1−τ) e (g, k)
γ−1

σ̂(1−τ) (λ (1− τ))
1

σ̂(1−τ) exp

(
1

σ̂

(
αt + εt − ϕ

1− τ

))
ct(xt)

−γ
σ̂(1−τ)

and the expression for household consumption

ct(xt) =

g∑
i∈1

∫
λ [exp (αt + εt)hit (xt, εt)]

1−τ dF a
εt

= g exp ((1− τ)αt)

∫
λ exp ((1− τ) εt)hit (xt, εt)

1−τ dF a
εt

= (g)1+
1−τ
σ+τ e (g, k)(γ−1) 1−τ

σ+τ ct (xt)
− γ(1−τ)

σ+τ exp

(
(1− τ) (1 + σ)

σ + τ
αt − 1− τ

σ + τ
ϕ

)

× (1− τ)
1−τ
σ+τ λ

1+σ
σ+τ

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

Taking logs:
(
1 + γ

1− τ

σ + τ

)
log ct (xt)

=

(
1 +

1− τ

σ + τ

)
log g + (γ − 1)

1− τ

σ + τ
log e (g, k) +

(1− τ) (1 + σ)

σ + τ
αt − 1− τ

σ + τ
ϕ

+
1− τ

σ + τ
log (1− τ) + log

1 + σ

σ + τ
λ+ log

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt

and rearranging

log ct (xt) =
σ+τ
1−τ

σ+τ
1−τ

+ γ
log g +

1
σ+τ
1−τ

+ γ
log g − 1− γ

σ+τ
1−τ

+ γ
log e (g, k) +

1 + σ
σ+τ
1−τ

+ γ
αt

− ϕ
σ+τ
1−τ

+ γ
+

1
σ+τ
1−τ

+ γ
log (1− τ) +

1+σ
1−τ

σ+τ
1−τ

+ γ
log λ

+
σ+τ
1−τ

σ+τ
1−τ

+ γ
log

∫
exp

(
(1− τ) (1 + σ)

σ + τ
εt

)
dF a

εt.

Using the σ̂ = (σ + τ) / (1− τ) notation:

log ct (xt) =
1 + σ̂

σ̂ + γ
log g − 1− γ

σ̂ + γ
log e (g, k) +

(1− τ) (1 + σ̂)

σ̂ + γ
αt − ϕ

σ̂ + γ
+ Ca

t , (B14)
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where Ca
t is defined as

Ca
t ≡ 1

σ̂ + γ

[
log (1− τ) + (1 + σ̂) log λ+ σ̂ log

∫
exp

(
(1− τ) (1 + σ̂)

σ̂
εt

)
dF a

εt

]
.

Now substitute the expression for ct (xt) of eq. (B14) into eq. (B13) to derive an expres-

sion for hit (xt, εt),

log hit (xt, εt) =
1

1− τ

1

σ̂
log g +

γ − 1

1− τ

1

σ̂
log e (g, k)− 1

σ̂

ϕ

1− τ
+

1

σ̂
αt

+
1

σ̂
εt +

1

σ̂

1

1− τ
log (λ (1− τ))− 1

σ̂

γ

1− τ
log ct (xt)

=
1

1− τ

1− γ

σ̂ + γ
(log g − log e (g, k)) +

1

σ̂
εt +

1− γ

σ̂ + γ
αt − 1

σ̂ + γ

ϕ

1− τ
+Ha

t ,

where

Ha
t ≡ − 1

σ̂

1

1− τ
log (λ (1− τ))− 1

σ̂

γ

1− τ
Ca
t .

We conclude that household consumption and individual hours are given by

log ct(xt) = Dc (g, k)− (1− τ) ϕ̂+ (1− τ)
1 + σ̂

σ̂ + γ
αt + Ca

t

log hit (xt, εt) = Dh (g, k)− ϕ̂+
1− γ

σ̂ + γ
αt +

εt
σ̂
+Ha

t , i = 1, ..., g

where ϕ̂ = ϕ/ ((1− τ) (σ̂ + γ)) is the rescaled preference weight, and the equivalization

dummies Dc (g, k) and Dh (g, k) are given by

Dc (g, k) =
1 + σ̂

σ̂ + γ
log g − 1− γ

σ̂ + γ
log e (g, k)

Dh (g, k) =
1

1− τ

1− γ

σ̂ + γ
[log g − log e (g, k)] .

To sum up, in this case both household consumption and individual hours depend in general

on the vector of household type (g, k) . In the special case γ = 1 hours are again independent

of (g, k) and consumption is proportional to the number of adults g.

C Identification

This appendix contains proofs of Propositions 3 and a new Corollary 3.1 that extends Propo-

sition 3 to allow for biannual panel data. Finally, this appendix also contains the additional

identification assumptions made in the estimation of the model (see Section 4.3).
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C.1 Proof of Proposition 3

Proposition 3 [identification with no consumption data]With an unbalanced panel

on wages and hours from t = 1, ..., T , and an external estimate of measurement error in

earnings vµy, the same parameters as in Proposition 2 are identified.

Proof The proof is organized in three sequential steps.

1. Given foreknowledge of vµy, we identify σ̂, vµh, and the sequence {vθ,t}T−1
t=1 off moments

involving (co-)variance of changes minus changes in (co-)variances:

(a) The Frisch elasticity 1/σ̂ is identified by 1/σ̂ equal to

covat (∆ log ŵ,∆ log ĥ) + varat (∆ log ĥ)−∆covat (log ŵ, log ĥ)−∆varat (log ĥ)

covat

(
∆ log ŵ,∆ log ĥ

)
+ varat (∆ log ŵ)−∆covat

(
log ŵ, log ĥ

)
−∆varat (log ŵ)− 2vµy

.

This expression can equivalently be formulated as

1

σ̂
=

covat (∆ log ŷ,∆ log ĥ)−∆covat (log ŷ, log ĥ)

covat (∆ log ŷ,∆ log ŵ)−∆covat (log ŷ, log ŵ)− 2vµy
.

(b) The sequence {vθ,t}T−1
t=1 is then identified by panel data available from t = 2, ..., T :

covat (∆ log ŵ,∆ log ĥ) + varat (∆ log ĥ)−∆covat (log ŵ, log ĥ)−∆varat (log ĥ)

= 2
(1 + σ̂)

σ̂2
vθ,t−1.

(c) Measurement error in hours is then identified from e.g.

varat

(
∆ log ĥ

)
−∆varat

(
log ĥ

)
=

2

σ̂2
vθ,t−1 + 2vµh.

2. The parameter γ and the two sets of parameters {vηt}Tt=2 and {vωt}Tt=2 are then identi-

fied from within-cohort changes in the macro moments, ∆varat (log ŵ) , ∆varat

(
log ĥ

)
,

and ∆covat

(
log ŵ, log ĥ

)
, all available from t = 2, ..., T . These parameters can be iden-

tified recursively as follows:

3. Combine (24)-(25) to get

(
∆covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt +∆vθt)

)2

(
∆varat

(
log ĥ

)
− 1

σ̂2 (vηt +∆vθt)
) =

(
1−γ
σ̂+γ

)2

(vωt)
2

(
1−γ
σ̂+γ

)2

vωt

= vωt

14



Combine this with (23) to get an equation in (vηt +∆vθt),

(
∆covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt +∆vθt)

)2

(
∆varat

(
log ĥ

)
− 1

σ̂2 (vηt +∆vθt)
) = ∆varat (log ŵ)− (vηt +∆vθt) .

Therefore, each element of the sequence {vηt +∆vθt}Tt=2 is identified by4

(vηt +∆vθt) =

(
∆covat

(
log ŵ, log ĥ

))2

−∆varat (log ŵ) ·∆varat

(
log ĥ

)

∆covat (log ŵ,log ĥ)
σ̂

− ∆varat (log ŵ)

σ̂2 −∆varat

(
log ĥ

) ,

which, given {vθ,t}T−1
t=1 , pins down {vη,t}T−1

t=2 .

(a) Given vηt +∆vθt, each element of the sequence {vωt}Tt=2 is identified by (23),

vωt = ∆varat (log ŵ)− (vηt +∆vθt) .

(b) Given vηt +∆vθt and vωt, the risk aversion parameter γ is determined by (25) as

the solution to the following equation:

1− γ

σ̂ + γ
=

∆covat

(
log ŵ, log ĥ

)

vωt
− 1

σ̂

(vηt +∆vθt)

vωt
.

4. Given values for γ, σ̂, {vθt}T−1
t=1 and {vµh, vµy}, the following macro moments, available

for all t = 1, ..., T and evaluated for the youngest age group, identify the sequence of

cohort effects {vϕ̂t, vα0t}Tt=1, {vκ0t}Tt=2, and (vκ0T + vθT ). We do it in two steps

(a) First, the following two linearly independent macro moments, available for all

t = 1, ..., T and evaluated for the youngest age group, identify the sequence of

4To see this, note that

(
∆covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt +∆vθt)

)2

= (∆varat (log ŵ)− (vηt +∆vθt))

(
∆varat

(
log ĥ

)
− 1

σ̂2
(vηt +∆vθt)

)

(
∆covat

(
log ŵ, log ĥ

))2

−
∆covat

(
log ŵ, log ĥ

)

σ̂
(vηt +∆vθt) +

1

σ̂2
(vηt +∆vθt)

2

= ∆varat (log ŵ) ·∆varat

(
log ĥ

)
− ∆varat (log ŵ)

σ̂2
(vηt +∆vθt)

− (vηt +∆vθt) ·∆varat

(
log ĥ

)
+

1

σ̂2
(vηt +∆vθt)

2
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cohort effects in insurable- and uninsurable initial wages, {vα0t}Tt=1, {vκ0t}Tt=2, and

(vκ0T + vθT ),

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh

cov0t

(
log ŵ, log ĥ

)
=

(
1− γ

σ̂ + γ

)
· vα0t +

1

σ̂
(vκ0t + vθt)− vµh.

(b) Finally, the following macro moments, available for all t = 1, ..., T and evaluated

for the youngest age group, identify the sequence of cohort effects in preference

heterogeneity, {vϕ̂t}Tt=1,

cov0t

(
log ŵ, log ĥ

)
+ var0t

(
log ĥ

)
= vϕ̂t+

(1− γ) (1 + σ̂)

(σ̂ + γ)2
vα0t+

1 + σ̂

σ̂2
(vκ0t + vθt) ,

since every other parameter in those three moments is already known. This

concludes the proof.

C.2 Extending Proposition 3 to biannual data

It is possible to extend Proposition 3 to allow for biannual panel data towards the end of the

sample, so the proposition can be applied directly to the PSID. This amounts to combining

Proposition 3 with Corollary 2.2. We state this formally as the following corollary.

Corollary 3.1 [extending Proposition 3 to biannual panel data] Suppose

one has access to an unbalanced panel on wages and hours, but no data on consump-

tion. The panel data are available annually until year t̂ and biannually thereafter, i.e.

available for the years t = 1, 2, ..., t̂ and t = t̂ + 2, t̂ + 4, ..., T − 2, T . Suppose further

that one has an exogenous estimate of measurement error in earnings, vµy. Then, one

can identify {σ̂, γ, vµh, vµc} , the sequences {vϕ̂t}Tt=1 , {vωt, vηt}t̂t=2 , {vθt, vκ0t, vα0t}t̂t=1, and

{vθt, vκ0t, vα0t, vω,t−1 + vωt, vη,t−1 + vηt} for t = t̂ + 2, t̂ + 4, ..., T − 2, as well as the sums

{vη,T−1 + vη,T + vθ,T} and {vκ0,T + vθ,T}.

Proof Start by following the proof of Proposition 3 for the years t = 1, 2, ..., t̂. Consider

then the time-varying parameters for the biannual sample, i.e., for t = t̂, t̂+2, t̂+4, ..., T−2, T .

These parameters are identified in five sequential steps.

1. Identify {vθ,t} for the biannual years t = t̂, t̂+2, t̂+4, ..., T − 2, as well as vηt̂ and vκ0 t̂,

by combining the following moments,

varat
(
∆2 log ŵ

)−∆2varat (log ŵ) = 2vθ,t−2 + 2 (vµy + vµh) .

16



which is available for t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, T . Note that, since vθ,t̂ is identified,

so are vη,t̂ and vκ0 t̂.

2. Identify {vηt + vη,t−1} for the biannual years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, and the sum

(vη,T + vη,T−1 + vθT ). Start by combining the biannual versions of (24), (25), and (23)

to get an equation where (vηt + vη,t−1 +∆2vθt) is the only unknown:
(
∆2covat

(
log ŵ, log ĥ

)
− 1

σ̂
(vηt + vη,t−1 +∆2vθt)

)2

∆2varat

(
log ĥ

)
− 1

σ̂2 (vηt + vη,t−1 +∆2vθt)

=

((
1−γ
σ̂+γ

)
(vωt + vω,t−1)

)2

(
1−γ
σ̂+γ

)2

(vωt + vω,t−1)
= (vωt + vω,t−1)

= ∆2varat (log ŵ)−
(
vηt + vη,t−1 +∆2vθt

)
.

This gives a linear equation in (vηt + vη,t−1 +∆2vθt),

(vηt + vη,t−1 + vθt − vθ,t−2)

=

(
∆2covat

(
log ŵ, log ĥ

))2

−∆2varat (log ŵ) ·∆2varat

(
log ĥ

)

1
σ̂
·∆2covat

(
log ŵ, log ĥ

)
− 1

σ̂2 ·∆2varat (log ŵ)−∆2varat

(
log ĥ

) .

Since {vθt} is known for the years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, this equation identifies

{vη,t + vη,t−1} for the biannual years t = t̂, t̂ + 2, t̂ + 4, ..., T − 2, as well as the sum

(vη,T + vη,T−1 + vθ,T ).

3. Given {vη,t + vη,t−1} for the biannual years t = t̂, t̂+ 2, t̂+ 4, ..., T − 2 and

(vη,T + vη,T−1 + vθ,T ), the sequence of variances of uninsurable shocks {vω,t + vω,t−1}
for the biannual years t = t̂, t̂+ 2, t̂+ 4, ..., T − 2 is identified from the growth in wage

inequality:

∆2varat (log ŵ) = (vωt + vω,t−1) + (vηt + vη,t−1 + vθt)− vθ,t−2.

4. Consider now the cohort effects {vα0t, vκ0t} for the biannual years t = t̂, t̂ + 2, ..., T .

The uninsurable component vα0t is identified as
(
cov0t

(
log ŵ, log ĥ

)
+ vµh

)
− 1

σ̂

(
var0t (log ŵ)− (vµy + vµh)

)

=
1− γ

σ̂ + γ
vα0t +

1

σ̂
(vκ0t + vθt)− 1

σ̂
(vα0t + (vκ0t + vθt))

=

(
1− γ

σ̂ + γ
− 1

σ̂

)
vα0t,
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which is available for t = t̂, t̂ + 2, ..., T . The wage inequality for new cohorts then

identify the variance of the insurable cohort effect {vκ0,t}:

var0t (log ŵ) = vα0t + (vκ0t + vθt) + vµy + vµh,

which is available for t = t̂, t̂ + 2, ..., T − 2 since the other components on the right-

hand side are known those years. For the final year t = T we can only identify the

sum (vκ0,T + vθT ).

5. Finally, the cohort effects {vϕ̂,t}Tt=t̂ are identified by

var0t

(
log ĥ

)
= vϕ̂t +

(
1− γ

σ̂ + γ

)2

vα0t +
1

σ̂2
(vκ0t + vθt) + vµh

for the biannual years t = t̂, t̂+ 2, ..., T , and by

var1t

(
log ĥ

)
= vϕ̂,t−1 +

(
1− γ

σ̂ + γ

)2

(vα0,t−1 + vωt) +
1

σ̂2
(vκ0,t−1 + vηt + vθt) + vµh,

available at t = t̂, t̂+ 2, ..., T − 2, T , to identify {vϕ̂,t}Tt=t̂ in the in-between years.

D Additional identifying assumptions

In the estimation, we make the following additional identifying assumptions:

1. Assume vκ0,T = vκ0,T−2.Given that {vκ0,T + vθ,T} and {vη,T−1 + vη,T + vθ,T} are already
identified from Corollary 2.2, this assumption identifies vθ,T and {vη,T−1 + vη,T} .

2. For t = t̂+ 1, t̂+ 3, ..., T − 1, assume vκ0,t =
vκ0,t−1+vκ0,t+1

2
. Given this “smooth cohort

effects” assumption, the moment

var1t (log ŵ)− var0t (log ŵ) = (vα0,t−1 + vωt) + (vκ0,t−1 + vηt)− vα0t − vκ0t (D15)

for t = t̂ + 2, t̂ + 4, ..., T identifies the corresponding values for vη,t. Given that

{vη,t−1 + vηt} is already identified for these years from Corollary 2.2 and Assumption

1, the corresponding values for vη,t−1 are also identified.

3. For t = t̂+ 1, t̂+ 3, ..., T − 1, assume vθt =
vθ,t−1+vθ,t+1

2
.

4. Assume vω1 = vω2.

5. Assume vη1 = vη2.
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Table 5: Parameter Estimates: Baseline Model

vα0t vκ0t vϕt vωt vηt vθt
1967 0.127 0.023 0.445 0.003 0.001 0.024

[0.106, 0.141] [0.009, 0.042] [0.399, 0.522] [0.002, 0.004] [0.000, 0.002] [0.017, 0.030]
1968 0.110 0.000 0.563 0.003 0.001 0.008

[0.080, 0.133] [0.000, 0.000] [0.487, 0.683] [0.002, 0.004] [0.000, 0.002] [0.004, 0.013]
1969 0.112 0.000 0.538 0.000 0.007 0.010

[0.085, 0.132] [0.000, 0.002] [0.466, 0.657] [0.000, 0.000] [0.002, 0.012] [0.006, 0.015]
1970 0.111 0.000 0.541 0.000 0.007 0.017

[0.085, 0.126] [0.000, 0.020] [0.465, 0.659] [0.000, 0.000] [0.002, 0.011] [0.012, 0.021]
1971 0.099 0.009 0.507 0.000 0.005 0.015

[0.079, 0.115] [0.000, 0.029] [0.439, 0.622] [0.000, 0.005] [0.000, 0.009] [0.009, 0.019]
1972 0.107 0.029 0.518 0.004 0.002 0.021

[0.087, 0.121] [0.009, 0.053] [0.448, 0.635] [0.000, 0.009] [0.000, 0.007] [0.014, 0.026]
1973 0.106 0.029 0.537 0.000 0.004 0.025

[0.088, 0.121] [0.006, 0.052] [0.474, 0.646] [0.000, 0.006] [0.000, 0.007] [0.020, 0.031]
1974 0.101 0.036 0.481 0.000 0.002 0.031

[0.084, 0.116] [0.013, 0.060] [0.422, 0.576] [0.000, 0.004] [0.000, 0.006] [0.023, 0.037]
1975 0.097 0.024 0.455 0.005 0.003 0.026

[0.079, 0.111] [0.003, 0.050] [0.397, 0.546] [0.000, 0.011] [0.000, 0.009] [0.019, 0.033]
1976 0.096 0.032 0.468 0.004 0.003 0.034

[0.079, 0.108] [0.009, 0.057] [0.412, 0.560] [0.000, 0.009] [0.000, 0.009] [0.028, 0.041]
1977 0.089 0.021 0.506 0.001 0.008 0.029

[0.075, 0.103] [0.001, 0.043] [0.446, 0.600] [0.000, 0.008] [0.001, 0.012] [0.022, 0.035]
1978 0.086 0.017 0.490 0.003 0.005 0.021

[0.072, 0.099] [0.000, 0.038] [0.431, 0.588] [0.000, 0.009] [0.000, 0.010] [0.016, 0.027]
1979 0.090 0.013 0.499 0.008 0.008 0.024

[0.074, 0.098] [0.000, 0.035] [0.443, 0.597] [0.000, 0.014] [0.003, 0.016] [0.017, 0.030]
1980 0.090 0.036 0.508 0.000 0.023 0.016

[0.077, 0.101] [0.016, 0.057] [0.450, 0.607] [0.000, 0.006] [0.016, 0.027] [0.011, 0.022]
1981 0.089 0.045 0.493 0.000 0.014 0.021

[0.076, 0.101] [0.025, 0.064] [0.435, 0.595] [0.000, 0.000] [0.008, 0.020] [0.015, 0.026]
1982 0.089 0.056 0.452 0.000 0.013 0.022

[0.075, 0.101] [0.033, 0.078] [0.398, 0.546] [0.000, 0.000] [0.007, 0.019] [0.015, 0.029]
1983 0.104 0.065 0.453 0.022 0.004 0.026

[0.090, 0.116] [0.041, 0.086] [0.399, 0.547] [0.014, 0.029] [0.000, 0.013] [0.019, 0.033]
1984 0.120 0.072 0.463 0.023 0.000 0.030

[0.105, 0.131] [0.049, 0.096] [0.405, 0.567] [0.014, 0.030] [0.000, 0.008] [0.021, 0.038]
1985 0.119 0.081 0.491 0.008 0.007 0.035

[0.106, 0.132] [0.058, 0.104] [0.425, 0.592] [0.000, 0.018] [0.000, 0.014] [0.028, 0.043]
1986 0.124 0.078 0.518 0.008 0.004 0.034

[0.108, 0.137] [0.057, 0.100] [0.448, 0.625] [0.000, 0.016] [0.000, 0.011] [0.027, 0.043]
1987 0.123 0.079 0.523 0.008 0.004 0.035

[0.110, 0.134] [0.058, 0.099] [0.458, 0.628] [0.000, 0.018] [0.000, 0.010] [0.029, 0.042]
1988 0.122 0.078 0.488 0.007 0.000 0.039

[0.109, 0.132] [0.059, 0.099] [0.424, 0.593] [0.000, 0.013] [0.000, 0.003] [0.031, 0.046]
1989 0.112 0.072 0.496 0.000 0.000 0.039

[0.099, 0.123] [0.053, 0.093] [0.431, 0.599] [0.000, 0.003] [0.000, 0.000] [0.032, 0.045]
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Table 5: (Continued) Parameter Estimates: Baseline Model

vα0t vκ0t vϕt vωt vηt vθt
1990 0.114 0.052 0.506 0.000 0.000 0.050

[0.100, 0.125] [0.030, 0.076] [0.440, 0.612] [0.000, 0.000] [0.000, 0.000] [0.041, 0.058]
1991 0.110 0.056 0.475 0.001 0.002 0.048

[0.098, 0.123] [0.033, 0.080] [0.410, 0.578] [0.000, 0.008] [0.000, 0.007] [0.039, 0.055]
1992 0.126 0.042 0.396 0.022 0.000 0.057

[0.110, 0.136] [0.020, 0.066] [0.339, 0.488] [0.010, 0.027] [0.000, 0.007] [0.048, 0.066]
1993 0.126 0.035 0.468 0.000 0.000 0.072

[0.110, 0.138] [0.015, 0.060] [0.398, 0.573] [0.000, 0.000] [0.000, 0.000] [0.061, 0.083]
1994 0.127 0.029 0.451 0.002 0.004 0.051

[0.111, 0.140] [0.006, 0.053] [0.377, 0.558] [0.000, 0.009] [0.000, 0.009] [0.042, 0.062]
1995 0.120 0.046 0.484 0.002 0.000 0.064

[0.106, 0.135] [0.018, 0.069] [0.404, 0.600] [0.000, 0.009] [0.000, 0.000] [0.052, 0.073]
1996 0.107 0.034 0.541 0.000 0.000 0.050

[0.092, 0.122] [0.005, 0.058] [0.455, 0.666] [0.000, 0.000] [0.000, 0.000] [0.041, 0.059]
1997 0.143 0.033 0.573 0.032 0.000 0.053

[0.120, 0.158] [0.006, 0.059] [0.484, 0.712] [0.011, 0.043] [0.000, 0.005] [0.042, 0.062]
1998 0.131 0.033 0.587 0.004 0.002 0.055

[0.115, 0.145] [0.006, 0.060] [0.508, 0.713] [0.000, 0.022] [0.000, 0.007] [0.044, 0.064]
1999 0.117 0.029 0.611 0.006 0.004 0.067

[0.099, 0.131] [0.003, 0.055] [0.521, 0.740] [0.000, 0.013] [0.000, 0.009] [0.055, 0.077]
2000 0.110 0.024 0.595 0.000 0.000 0.079

[0.094, 0.127] [0.000, 0.049] [0.514, 0.726] [0.000, 0.009] [0.000, 0.004] [0.067, 0.090]
2001 0.121 0.031 0.575 0.021 0.005 0.086

[0.097, 0.142] [0.007, 0.057] [0.491, 0.717] [0.000, 0.034] [0.000, 0.013] [0.073, 0.098]
2002 0.114 0.039 0.653 0.013 0.000 0.093

[0.094, 0.131] [0.014, 0.064] [0.552, 0.809] [0.000, 0.028] [0.000, 0.009] [0.078, 0.107]
2003 0.079 0.050 0.662 0.000 0.000 0.090

[0.058, 0.102] [0.022, 0.081] [0.528, 0.847] [0.000, 0.010] [0.000, 0.000] [0.078, 0.104]
2004 0.111 0.061 0.655 0.043 0.000 0.087

[0.080, 0.134] [0.030, 0.098] [0.498, 0.868] [0.028, 0.050] [0.000, 0.000] [0.077, 0.101]
2005 0.100 0.061 0.500 0.007 0.008 0.059

[0.100, 0.100] [0.030, 0.098] [0.500, 0.500] [0.000, 0.021] [0.005, 0.009] [0.048, 0.069]
2006 0.100 0.061 0.500 0.000 0.008 0.031

[0.100, 0.100] [0.030, 0.098] [0.500, 0.500] [0.000, 0.013] [0.005, 0.009] [0.020, 0.036]
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Figure 7: Estimation without CEX data. Data and model fit for moments in levels along the
age dimension. Dotted lines denote 90–10 bootstrapped confidence intervals for the empirical
moments.
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Figure 8: Estimation without CEX data. Data and model fit for moments in levels along
the time dimension. Dotted lines denote 90–10 bootstrapped confidence intervals for the
empirical moments.
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