
There is No Excess Volatility Puzzle∗

Andrew Atkeson Jonathan Heathcote Fabrizio Perri
UCLA Federal Reserve Bank of Minneapolis

May 2024

Abstract

We present two valuation models that we use to account for the annual data on price
per share and dividends per share for the CRSP Value-Weighted Index from 1929-2023.
We show that it is a simple matter to account for these data based purely on a model
of variation in the expected ratio of dividends per share to aggregate consumption
over time under two conditions. First, investors must receive news shocks regarding
the expected ratio of dividends per share to aggregate consumption in the long run.
Second, the discount rate used to evaluate the impact of this news on the current price
per share must be low. We argue that both of these conditions are likely satisfied
in the data. Because our valuation model reproduces the data on price per share
and dividends per share exactly over this long time period, it also reproduces realized
values of returns, dividend growth, the dividend-price ratio, and all Campbell-Shiller-
style regression results involving these variables. Thus, we conclude that the answer to
Shiller (1981)’s question “Do stock prices move too much to be justified by subsequent
movements in dividends?” is No.
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1 Introduction

Shiller (1981) famously posed the question “Do stock prices move too much to be justified

by subsequent movements in dividends?” An important body of work in finance argues that

the answer to this question is yes. See, for example, Leroy and Porter (1981), Campbell and

Shiller (1987), Campbell and Shiller (1988), Cochrane (2011), and Shiller (2014).

In this paper, we call into question the conclusions drawn from this prior work. In

particular, we present two simple valuation models that we use to account for the annual

data on price per share and dividends per share for the CRSP Value-Weighted Index from

1929-2023. These two valuation models are based on two simple models of the dynamics of

agents’ expectations of future dividends per share valued at constant discount rates. We use

these two models to show that it is a straightforward exercise to account for these aggregate

stock market data based purely on a model of variation in the expected ratio of dividends

per share to aggregate consumption over time under two conditions:

1. First, investors must receive news shocks regarding the expected ratio of dividends per

share to aggregate consumption in the long run.

2. Second, the discount rate that determines the impact of this news on the current price

per share must be low.

We argue that both of these conditions are likely satisfied in the data.

We offer the results of these two valuation exercises as evidence that the fluctuations that

we have observed in the value of the aggregate stock market from 1929-2023 can be accounted

for by a reasonable model of fluctuations in investors’ expectations of future dividends without

reliance on changes in discount rates, bubbles, or behavioral explanations of stock market

volatility. We do not see our analysis as the final word on the question of what drives stock

market volatility. Instead, we see our paper as breathing new life into the old hypothesis

that changing expectations of future dividends play an important, or even dominant role, in

driving aggregate stock market volatility.

We wish to account for the dynamics of annual data on the ratio of price per share for the

CRSP Value-Weighted Index to Personal Consumption Expenditures (PCE) over the period

1929-2023 as shown in the left panel of Figure 1. As is evident in this figure, the ratio of this

measure of stock prices to consumption is quite volatile over time. We aim to account for the

realized values of this series for stock prices for each year on the basis of a simple time series

model of the dynamics of the ratio of dividends per share for the CRSP Value-Weighted

Index to PCE, where the realized data for dividends per share relative to consumption are

shown in the right panel of Figure 1.
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One striking feature of the data on the ratio of dividends per share to consumption

presented in Figure 1 is that it is unclear what long-run value the ratio is converging to.

Motivated by this uncertainty, our first valuation model assumes that the dynamics of the

ratio of dividends per share to consumption, Dt/Ct, follows a first-order autoregressive pro-

cess with a shifting endpoint. This endpoint, which we denote by Xt, represents agents’

expectations at time t of the value of the ratio of dividends per share to consumption to

which this series will converge in the long run. In particular,

Dt+1

Ct+1

−Xt = ρ

(
Dt

Ct

−Xt

)
+ σDϵD,t+1, (1)

where ρ is the AR(1) persistence parameter, and ϵD,t+1 is a normally-distributed innovation.

This endpoint Xt itself follows a random walk, with innovations given by ϵX,t+1:

Xt+1 = Xt + σXϵX,t+1. (2)

Given this process for dividends per share relative to consumption, we price equity in a

standard way. We assume that the representative investor’s pricing kernel has the property

that the price of a perpetual claim to aggregate future consumption relative to current con-

sumption, which we denote by γX , is time-invariant. It is in this sense that the discount

rate in our model is constant. Estimates of this price-dividend ratio for a consumption claim

in the literature are typically high, or even infinite (see, for example, Alvarez and Jermann,

2004, Lustig, Van Nieuwerburgh, and Verdelhan, 2013, or Gârleanu and Panageas, 2023).

Given our dividend process and this assumptions of a constant discount rate, we show that

the level of the ratio of the price per share to consumption is linear in two state variables: (i)

the transitory deviation of the ratio of dividends per share to consumption from its long-run

value, and (ii) the long-run value as represented by Xt:

PDt

Ct

=
γXρ

1 + γX(1− ρ)

(
Dt

Ct

−Xt

)
+ γXXt + ϕ. (3)

The term ϕ captures the price impact of risk associated with fluctuations in the ratio

of dividends to consumption. In our analysis we show that with a standard conditionally-

lognormal pricing kernel and normal innovations in equations (1) and (2) this risk term ϕ

does not vary over time.

In light of the affine structure of our valuation equation (3), we label this our affine valu-

ation model. Given a value for γX , we show that it is straightforward to combine equations

(1), (2) and (3) to estimate the other two parameters that appear in the pricing equation: ρ

and ϕ. Given these parameters, we construct a series for the long-run expected dividend to
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consumption ratio, Xt, that perfectly replicates observed fluctuations in the price per share

of the CRSP Value-Weighted Index.

Note that γX , the price of a claim to future consumption relative to current consumption,

captures the impact at the margin of a news shock at t regarding expected long-run divi-

dends (ϵX,t+1) on the current price per share to consumption ratio. Thus, when we use high

estimates of the value for γX , we find that the series {Xt} for long-run expected dividends

per share to consumption required to account for the annual data on the ratio of CRSP price

per share to consumption shows only modest variation over time: see this result in Figure 4.

That is, small news shocks about the long run are all that is required to account for observed

stock market volatility.

In contrast, we find that if γX is small, meaning that claims to future consumption are

discounted at a high rate, then news about the long run does not have a large impact on

current stock prices, and implausibly large fluctuations in expected dividends Xt are required

to account for the observed dynamics of stock prices: see this result in Figure 9.

Given that we can use equation (3) period-by-period to solve for the values of Xt needed

to rationalize data on the ratio of price per share to consumption (PDt

Ct
) given data on the ratio

of dividends per share to consumption (Dt

Ct
), one might ask, what is the economic content

of our valuation model? We argue that our valuation model should be evaluated on three

points.

First, the implied series {Xt} for the expected value of dividends per share to consumption

should be plausible given the observed variation in the realized ratio of dividends per share

to consumption (Dt

Ct
). We argue that our first valuation model passes this test based on the

results shown in Figure 4.

Second, the model-implied innovations {ϵX,t+1, ϵD,t+1} should be expectation errors. That

is, they should not be forecastable. We argue that our model passes this test based on the

autocorreltion functions for these innovations shown in the right panel of Figure 5.

Third, our affine valuation model has the property implied by equations (1) and (2) that

a component of dividend growth is forecastable — deviations of dividends from their long

run expected value Xt implied by current equity valuations should gradually disappear at

rate ρ < 1.

We explore whether Xt − Dt

Ct
(equivalently PDt

Ct
− γX Dt

Ct
) does in fact predict subsequent

growth of dividends per share relative to consumption (which it is supposed to) or whether

it instead predicts (negative) growth in Xt (which is supposed to be unpredictable, given our

assumed unit root process). We find that this price-minus-dividend statistic predicts future

gaps Dt+s

Ct+s
−Xt+s at all horizons s, and that the strength of this predictability is consistent

with that embedded in the auto-regressive process given in equation (1). Most importantly,
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this predictability entirely reflects predictability of future dividend growth: the price-minus-

dividend statistic does not predict growth in Xt. These two findings are shown in Figure

7.

This affine equity valuation model has the unfamiliar property that adjustments for the

risk of a claim to dividends over and above the risks of a claim to consumption are additive

(the ϕ term in equation 3). That property is what generates the result that, at the margin,

news about the long run ratio of dividends per share to consumption is discounted at a

rate associated with the pricing of a claim to aggregate consumption rather than at a rate

associated with the pricing of a claim to equity itself.

In contrast to this affine valuation model for equity, most of the prior literature derives

valuation formulas for equity claims in which the log (rather than the level) of a claim to

dividends per share relative to consumption is linear in the state variables. We develop such

a model as our second valuation model. In this exponentially affine model, we assume that it

is the trend growth rate of the log (rather than the level) of the ratio of dividends per share

to consumption that follows a first-order autoregressive process. The affine and exponentially

affine models feature the same pricing kernel.

We use this exponentially affine model to again to exactly reproduce the ratio of price

per share to consumption and to evaluate this second model on the same three criteria used

for the first model: (i) the model-implied fluctuations in the trend growth of the log ratio

of dividends per share to consumption denoted by {xt} should be reasonable relative to

observed fluctuations in the growth rate of this series, (ii) the model implied innovations to

{xt} should not be forecastable, and (iii), the values for {xt} implied by data on the ratio

of price per share to dividends per share should forecast subsequent growth in the log ratio

of divideds per share to consumption as described by the model. We argue that this second

model also passes all of these tests.

A reader who is not familiar with the construction of measures of price per share and

dividends per share for equity indices such as the CRSP Value-Weighted Index might wonder

why one would have significant uncertainty about either the level or the growth rate of the

ratio of dividends per share to aggregate consumption in the long run. We argue that much

of the uncertainty about the long-run values of these two ratios is not driven by economic

fundamentals but instead is driven by what are called corporate actions that impact the

number of shares outstanding for firms included in the index. These corporate actions include

entry of new firms into the index, exit of firms from the index, mergers and acquisitions, new

equity issuances and repurchases of shares by incumbent firms in the index.

As noted by Dichev (2006), Boudoukh et al. (2007), Larraine and Yogo (2008), Gârleanu

and Panageas (2023), and Davydiuk et al. (2023) among others, these corporate actions gen-
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erate large differences in the dynamics of dividends per share relative to aggregate dividends,

large differences in aggregate dividends relative to total cash flows to owners of equity, and

large differences in the dynamics of price per share relative to aggregate equity market capi-

talization as shown in Figure 2. In particular, it appears from Figure 2 that a large share of

the movements in the ratio of dividends per share to aggregate consumption that we see in

the data over the past century have been driven by the dynamics of corporate actions. Thus,

a large portion of the uncertainty about the long-run ratio or growth rate of dividends per

share to aggregate consumption that is so important for the volatility of the ratio of price per

share to aggregate consumption likely reflects uncertainty about future corporate actions.

The impact of corporate actions on measures of stock market value and dividends extends

to the observed ratio of price per share to dividends per share, which is typically used as

a measure of the price-dividend ratio in empirical asset pricing. As argued by Miller and

Modigliani (1961), what is likely fundamental in valuing equity are the total cash flows to

equity holders. They note that firms can use corporate actions to alter the dynamics of their

dividends while holding fixed these total cash flows to equity holders. Thus, they argue that

firms can alter the dynamics of their price-dividend ratio simply through changing their policy

for paying dividends. We suspect that such corporate actions have also played a large role in

driving the observed dynamics of the ratio of price per share to dividends per share over the

past century based on the findings of Larraine and Yogo (2008) and Atkeson, Heathcote, and

Perri (2024) who argue that ratios of total payouts to value do not show the same trends in

valuation ratios using price per share and dividends per share.

Our results are related to the large literature following Campbell and Shiller (1987) and

Campbell and Shiller (1988) looking for evidence of time-varying expected returns on the

aggregate stock market as a rationalization of stock market volatility. Because our valu-

ation model reproduces the data on price per share and dividends per share exactly over

this long time period, it also reproduces realized values of returns, dividend growth, and the

dividend-price ratio. It follows that all Campbell-Shiller style regression results involving

these variables replicate exactly in simulated model output, including those on return pre-

dictability. We use our second valuation model, the exponentially affine model, to conduct a

Monte Carlo exercise to evaluate the relationship between our valuation approach and these

regression results as summarized in Cochrane (2011) and Campbell (2018) in greater detail

in Section 5.2.

In terms of the literature, we see Barsky and De Long (1993) as the closest precursor to

our work. That paper emphasizes the role of shocks to the dividend growth rate in the long

run in accounting for the volatility of stock prices. Bansal and Lundblad (2002) and Bansal

and Yaron (2004) also point to low-frequency movements in expected growth in dividends as
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an important source of changes in the price-dividend ratio for the aggregate stock market.

We see our paper as different from these earlier papers in emphasizing the role of corporate

actions in generating these shocks to the growth rate of dividends per share relative to

consumption.

Greenwald, Lettau, and Ludvigson (2023) is an important precursor to our work in that it

uses a model in which shocks to the ratio of earnings to output play a major role in accounting

for the data on the evolution of the value of the stock market over time. We also follow them

in using a valuation model to uncover the innovations needed to account for the data. In

contrast to their work, however, we use the standard data on price per share and dividends

per share that are used in many asset pricing studies. Their work, and work by Larraine

and Yogo (2008) and our companion paper Atkeson, Heathcote, and Perri (2024), develops

valuation models using alternative data on cash flows to owners of U.S. corporations.

We note that it is standard in the asset pricing literature to build models with sepa-

rate dynamics for dividends and aggregate consumption and thus these models implicitly

incorporate shocks to expectations of the ratio of dividends to consumption in the long-run.

See, for example, Campbell and Cochrane (1999) and Bansal and Yaron (2004). But these

alternative models do not appear to put these shocks to long-run expectations of the ratio

of dividends per share to consumption at the center of their analysis. Given our results, it is

unclear whether the other model elements those papers emphasize are needed to account for

stock market data once one allows for news about the ratio of dividends to consumption in

the long-run. In that vein, we do not attempt a full general equilibrium asset pricing model

in this paper. As a result, we have nothing to say at this time about the economic sources of

the equity premium as measured by the high average returns to equity. We intend to explore

the mechanism laid out in Gârleanu and Panageas (2023) as an explanation for the equity

premium in future research.

The remainder of this paper is organized as follows. In Section 2 we review the data

on the stock market that we use in our study. In Section 3 we sketch our first valuation

model that delivers an affine model of equity prices. We describe how we use the model to

reproduce the realized data on stock prices and dividends in Section 3.1 and we describe our

model’s implications for the sources of the realized equity premium over the last century in

Section 3.5. We offer a more complete foundation for this affine model using Stein’s Lemma

in Section 4. In Section 5, we present our second valuation model with exponentially affine

prices for claims to equity and repeat our excess volatility exercise with this second model.

In Section 5.2, we use this exponentially affine model in a Monte Carlo exercise to explore

its implications for estimates of stock return predictability and predictability of growth rates

of the ratio of dividends per share to consumption with log dividend-price ratios. In Section
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6, we conclude.

2 Stock Market Data

In this section we review key properties of the data we study.

We use data on the CRSP Value-Weighted Total Market Index 1929-2023. We are some-

what pedantic in our presentation of this data as some readers may not be familiar with its

construction, and several elements of its construction are important in understanding the

motivation for the key assumptions in our valuation model.

The original data we use are CRSP indices of annual returns without dividends (denoted

by Rnd
t+1), returns with dividends (denoted by Rd

t+1), and total market capitalization (denoted

by TMCt) on the CRSP Value-Weighted Index combining stocks listed in the NYSE, AMEX,

and NASDAQ exchanges for the years 1929-2023. We focus on this time period as this is the

time period for which we also have NIPA data on Personal Consumption Expenditures.

As is well known, CRSP annual value-weighted returns on the total stock market are

high on average and quite volatile. In our sample, the arithmetic averages of nominal and

real returns with dividends (Rd
t+1) are 11.6% and 8.6% respectively (deflating with the PCE

deflator), and these nominal and real returns have a standard deviations of 19.8% and 19.5%

respectively.

The measure of price per share for the CRSP Value-Weighted Index that we use as the

measure of the value of the stock market in our study is constructed from the cumulation of

annual returns without dividends Rnd
t+1. Specifically, if we let PDt denote the level of price

per share on the last day of year t, we construct PD,t+1 = Rnd
t+1PDt. Note that PDt is an index

number in that the initial value must be normalized.

We plot the ratio of this index of price per share to Personal Consumption Expenditures

(PCE) in the left panel of Figure 1. We have normalized the index of price per share so that

the initial value of this ratio is equal to one. As is clearly evident in this figure, this ratio is

quite volatile.

The measure of dividends per share for the CRSP Value-Weighted Index that we denote

by Dt and use as our measure of cash flows to someone holding the CRSP Value-Weighted

Index is constructed to solve the following equation

Dt+1 + PD,t+1

PDt

= Rd
t+1

That is, given the index for price per share, the index for annual dividends per share is chosen

so that returns match value-weighted returns with dividends. This equation pins down the
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ratio of dividends per share to price per share. The scale of dividends per share is set by the

normalization of the level of price per share.

We plot the ratio of this index of dividends per share to PCE in the right panel of Figure

1. Henceforth, we denote this ratio of dividends per share to PCE by Dt

Ct
.

Our goal with our valuation models is to account for the data on the ratio of price per

share to PCE shown in the left panel of Figure 1 in terms of a plausible model of the expected

discounted present value of the data on the ratio of dividends per share to PCE shown in the

right panel of this figure.

1920 1940 1960 1980 2000 2020 2040
0.2

0.4

0.6

0.8

1

1.2
CRSP Price per Share over PCE

1920 1940 1960 1980 2000 2020 2040
0

0.01

0.02

0.03

0.04

0.05
CRSP Dividends per Share over PCE

Figure 1: Left Panel: The ratio of price per share for the CRSP Value-Weighted Total Market
Index to Personal Consumption Expenditures 1929-2023. The value of this ratio in 1929 is
normalized to one. Right Panel: The ratio of dividends per share for the CRSP Value-
Weighted Total Market Index to Personal Consumption Expenditures 1929-2023. This series
for dividends per share is normalized so that the ratio of the two series equals the ratio of
dividends per share to price per share at every date.

One striking feature of the data on the ratio of dividends per share to PCE shown in

the right panel of Figure 1 is that it does not appear to be stationary. Instead, it shows

a marked downward trend since 1929. The first key assumption in our valuation models

is that investors do not have a fixed expectation of the value of this ratio in the long run.

Instead, they receive news each period that leads them to revise their expectation of the

long-run value of this ratio. We argue that uncertainty about the long-run value of this ratio

is plausible as a matter of econometrics given its historical path as shown in the figure – it

is not at all clear what long-run value the series is converging to.

There are also multiple economic reasons why the ratio of dividends per share to PCE

might vary in the long run.
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First, it may be the case that the total cash flows paid to owners of U.S. corporations

relative to consumption might vary over time. Greenwald, Lettau, and Ludvigson (2023) and

Atkeson, Heathcote, and Perri (2024) argue that this is indeed the case.

Second, the fraction of economic activity carried out in publicly-traded corporations rel-

ative to all corporations might vary over time. This is likely the case as well over the course

of the past century.

Third, the methodology used in the construction of the indices of price per share and

dividends per share implies that these measures do not track the total value of the stock

market as measured by total market capitalization of the stocks in the index nor the total

value of cash payouts to owners of these equities. Instead, the ratio of the index of price per

share to total market capitalization varies over time as a result of a large number of actions

that result in changes in the number of shares outstanding for the firms in the index. These

corporate actions include entry and exit of firms in public markets, mergers of firms, issuance

of new shares or repurchases of shares by incumbent firms, etc. What these corporate actions

imply is that an investor who maintained a portfolio to track the CRSP Value-Weighted Index

would hold a share of the total market that varies over time. We give further details on these

points in Appendix B.

We show the variation of the ratio of the index of price per share to total market capi-

talization for the CRSP Value-Weighted Index over the period 1929-2023 in Figure 2. This

ratio represents the fraction of the total stock market held by an investor tracking the CRSP

Value-Weighted Index. In this figure, we normalized 1929 price per share so that the fraction

is equal to one in 1929.
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1

Figure 2: The fraction of the total market capitalization of the stocks in the CRSP Value-
Weighted Total Market Index held by an investor tracking that index, 1929-2023. The initial
value of this fraction has been normalized to one.

We see in this figure a sharp downward trend in the share of the total market held by

an index investor over this time period. An investor managing his or her portfolio to track

the CRSP Value-Weighted Index would end up holding a shrinking share of the total stock

market because he or she would not be purchasing the new shares being issued on net from

corporate actions.1 Thus, it is natural that the ratio of dividends per share to consumption

would also fall over time, as an investor tracking the index of price per share would have

claims to a shrinking share of total dividends. This figure also makes clear that part of

investors’ uncertainty regarding the long-run value of the ratio of dividends per share to

consumption is also driven by uncertainty regarding the future course of corporate actions.

A great deal of research focuses on modeling the dynamics of the ratio of price per

share to dividends per share. We plot the logarithm of the ratio of dividends per share

to price per share in the left panel of Figure 3. This is the measure of the dividend-price

ratio frequently used in Campbell-Shiller style regressions aiming to forecast returns and/or

growth in dividends per share. We see a sharp downward trend in this series over time,

which raises the question of whether this series is stationary and thus suitable for use in

regression analysis. We discuss in Appendix B how this measure of the dividend-price ratio

is impacted in arbitrary ways by the dynamics of corporate actions. The logic of this impact

1Gârleanu and Panageas (2023) document that most of this decline in the share of the total market held
by an index investor is driven by the entry of new firms into public markets through initial public offerings.
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follows from the arguments of Miller and Modigliani (1961) that the choice of whether firms

return money to shareholders via dividends or stock repurchases does not impact total market

capitalization or stock returns, but does impact dividend payouts, price per share, and the

observed dividend-price ratio. This disconnect between total cash flows to equity owners and

dividends per share is compounded by changes in the composition of firms in the index. See,

for example, Dichev (2006) and Davydiuk et al. (2023). The lesson of these arguments is that

the ratio of price per share to dividends per share should not be interpreted as a meaningful

economic fundamental.

We plot the level of the ratio of price per share to dividends per share in the right panel

of Figure 3. Naturally, we see a sharp upward trend in this series. This ratio rises from a

value close to 20 at the beginning of the sample to a value above 45 at the end of the sample.

It is unclear what long-run value this ratio is converging to. This uncertainty regarding the

long-run value of this ratio plays an important role in our valuation models.

1920 1940 1960 1980 2000 2020 2040
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100
CRSP Price per Share over Dividends per Share

Figure 3: Left Panel: The logarithm of the ratio of dividends per share to price per share
for the CRSP Value-Weighted Total Market Index 1929-2023. Right Panel: The level of the
ratio of price per share to dividends per share.

3 A First Valuation Model

We now present a simple valuation framework to assess whether data on price per share for

the CRSP Value-Weighted Index from 1929 to 2023 are too volatile to be accounted for by a

plausible model of the dynamics of dividends per share for that index under the “straw-man”

assumption that discount rates are constant over time. We make this assumption regarding

discount rates not because we believe that it is strictly true but instead to directly address
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the question posed in Shiller (1981).

In this section, we first present the model with a minimum of formal structure to make

the valuation equation accessible to a reader with only a basic knowledge of finance. In

Section 4 we present a more complete affine pricing model that provides a formal basis for

our key valuation equation. In Section 5, we present a second valuation model based on an

exponentially affine pricing model that is closer to the asset pricing models used more widely

in the literature.

Let PDt be the level of the CRSP Value-Weighted Index at the end of year t and Dt

dividends per share for that index in year t. Let Ct be aggregate PCE in year t. We use

nominal data. Let Dt

Ct
denote the ratio of dividends per share to consumption.

We begin with the standard valuation equation for the level of the index

PDt =
∞∑
k=1

Et [Mt,t+kDt+k] (4)

where Mt,t+k is the pricing kernel between periods t and t+ k.2

We find it convenient to work with ratios of price per share and dividends per share to

PCE. We therefore rewrite this pricing equation (4) as

PDt

Ct

=
∞∑
k=1

Et

[
Mt,t+k

Ct+k

Ct

Dt+k

Ct+k

]
.

Using the result that the expectation of a product of two random variables is the product

of the expectations plus the covariance between these variables, we have

PDt

Ct

=
∞∑
k=1

Et

[
Mt,t+k

Ct+k

Ct

]
Et

[
Dt+k

Ct+k

]
+

∞∑
k=1

Covt
(
Mt,t+k

Ct+k

Ct

,
Dt+k

Ct+k

)
. (5)

Note that the term
P

(k)
Ct

Ct

≡ Et

[
Mt,t+k

Ct+k

Ct

]
is the price at t of a claim to aggregate consumption at delivered at t+k relative to aggregate

consumption at t. We define the price at t of a claim to aggregate consumption in perpetuity

relative to the current level of aggregate consumption as

PCt

Ct

≡
∞∑
k=1

P
(k)
Ct

Ct

2Here and throughout the paper we are assuming that limS→∞ EtMt,t+SPDt+S = 0.
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The terms

H
(k)
t ≡ Covt

(
Mt,t+k

Ct+k

Ct

,
Dt+k

Ct+k

)
constitute a risk adjustment to the price of claims to dividends due to risk associated with

fluctuations in the ratio Dt+k

Ct+k
.

With this notation, we obtain the following valuation equation for the ratio of price per

share to consumption

PDt

Ct

=
∞∑
k=1

P
(k)
Ct

Ct

Et

[
Dt+k

Ct+k

]
+ ϕt (6)

where

ϕt ≡
∞∑
k=1

H
(k)
t .

Note that equation (6) has not required any assumptions beyond the original valuation equa-

tion (4) and thus should hold for all of the main models used in the asset pricing literature

for the aggregate stock market.3

3.1 An Excess Volatility Exercise

We now specialize the valuation equation (6) to conduct a Shiller (1981)-style excess volatility

calculation by imposing three assumptions.

Assumption 1: Assume that the ratio of the price of aggregate consumption at horizon

k = 1 relative to aggregate consumption today is constant over time, i.e.,

P
(1)
Ct

Ct

= β ≡ P
(1)
C

C

for all t.4

Given this assumption, we have

PCt

Ct

=
∞∑
k=1

P
(k)
Ct

Ct

=
∞∑
k=1

βk =
β

1− β
≡ PC

C

3We do assume that the infinite sums in this valuation equation (6) each converge separately. This need
not be the case.

4A simple example economy in which this assumption is satisfied is a model in which investors consume
Ct at each date t and value consumption streams using logarithmic utility and a constant discount factor β,

in which case
P

(1)
C

C = β. In such an economy ϕt = 0 since the realized values of Mt,t+1
Ct+1

Ct
are constant at β.
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for all k and t.5

Assumption 2: Assume that the risk adjustment terms H
(k)
t and thus ϕt are constant

over time. We present a full affine pricing model under which this assumption holds in

Section 4. This assumption does not hold in the more commonly used exponentially affine

pricing model. We conduct an alternative valuation exercise using such an alternative model

in Section 5.

With assumptions one and two, our valuation equation (6) can be written as

PDt

Ct

=
∞∑
k=1

βkEt

[
Dt+k

Ct+k

]
+ ϕ. (7)

We take this valuation equation as corresponding to a case with constant discounting as

we have assumed that both
P

(1)
C

C
and ϕ are constant over time. In this case, fluctuations

in the model-implied value of the ratio of price per share to consumption are accounted for

entirely by fluctuations in the future expected values of the ratio of dividends per share to

consumption.

Assumption 3: Assume that the ratio of dividends per share to consumption Dt

Ct
follows

a first-order autoregressive process with a shifting endpoint Xt as described in equations (1)

and (2) which we reproduce here:

Dt+1

Ct+1

−Xt = ρ

(
Dt

Ct

−Xt

)
+ σDϵD,t+1,

Xt+1 = Xt + σXϵX,t+1

where ρ is the AR(1) persistence parameter.

5To prove this statement, observe that these prices for consumption at horizon k satisfy the recursion

P
(k)
Ct

Ct
= Et

[
Mt,t+1

Ct+1

Ct

P
(k−1)
C,t+1

Ct+1

]

We then prove our result by induction. Starting with k = 2 and using the assumption that
P

(1)
Ct

Ct
is constant

and equal to β at each date t, we have

P
(2)
Ct

Ct
= β2

which is also constant over time. Repeating this argument then delivers the result for all k.
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These dynamics imply

Dt+1

Ct+1

−Xt+1 = ρ

(
Dt

Ct

−Xt

)
+ σDϵD,t+1 − σXϵX,t+1 (8)

with ϵX,t+1 being the innovation to the endpoint Xt+1 and ϵD,t+1 being the innovation to Dt+1

Ct+1

relative to its expected value at t. We assume that these are independent and have standard

normal distributions.6 We use the notation

σAϵA,t+1 ≡ σDϵD,t+1 − σXϵX,t+1

to refer to the combined innovation to the gap between the current dividend-consumption

ratio and its long-run expected value, Dt

Ct
−Xt.

Note that our third assumption implies that

Et

[
Dt+k

Ct+k

]
= ρk

(
Dt

Ct

−Xt

)
+Xt

and

lim
k→∞

Et

[
Dt+k

Ct+k

]
= Xt.

Thus, with Assumption 3, we obtain from equation (7) the valuation equation (3) that we

apply to account for the observed data on price per share:

PDt

Ct

= γD

(
Dt

Ct

−Xt

)
+ γXXt + ϕ

where

γD ≡ βρ

1− βρ

and

γX ≡ β

1− β
=

PC

C
.

Note that this valuation model has only three parameters: (i) the persistence of the

autoregressive component of the ratio of dividends to consumption ρ, (ii) the price-dividend

ratio for a one period consumption claim β (or equivalently PC

C
= β/(1 − β)), and (iii) the

risk adjustment parameter ϕ. The coefficients γD and γX are derived from the first two of

these parameters. These coefficients define, respectively, (i) the marginal response of the

equity price-to-consumption ratio to innovations to the gap between the current dividend-

6It is straightforward to allow these innovations to be contemporaneously correlated.
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to-consumption ratio and its expected long-run value, and (ii) the marginal response of

the equity price-to-consumption ratio to innovations to the expected long-run dividend-to-

consumption ratio.

3.2 Accounting for the Value of the Stock Market, 1929-2023

We use the valuation model in equation (3) to account for the data on equity price per share

using the data on dividends per share as follows.

First, we need values for the three model parameters β, ρ, and ϕ.

We cite Lustig, Van Nieuwerburgh, and Verdelhan (2013) for an estimate of the value

of the price dividend ratio for a claim to consumption of PC

C
= γX = 80. That is, we set

β = 80
81
. Alvarez and Jermann (2004) also offer estimates of the value of a claim to aggregate

consumption that are consistent with a high price-dividend ratio for such a claim. This price-

dividend ratio for a claim to consumption is quite high compared to price-dividend ratios

for equity (except recently), but one would reasonably expect that a claim to consumption

is safer than a claim to equity and hence should have a higher price-dividend ratio. Note

that the average growth rate of real PCE over the 1929-2023 time period is 3.14%. Many

estimates of the real interest lie below this number. As a result, some might argue that in

fact the present value of future relative to current consumption might be much higher or even

infinite. See, for example, Blanchard (2019) and Gârleanu and Panageas (2023).

We estimate ρ and ϕ as follows. Equation (3) can be rearranged to give

Dt

Ct

−Xt =
γX Dt

Ct
− PDt

Ct

(γX − γD)
+

ϕ

(γX − γD)
. (9)

We substitute this expression into equation (8) and estimate ρ and ϕ by least squares by

regressing γX Dt+1

Ct+1
−PD,t+1

Ct+1
on a constant and the same variable at date t.7 The slope coefficient

provides a direct estimate of ρ, while the constant corresponds to ϕ(ρ− 1). This procedure

gives ρ = 0.9447 and ϕ = −0.6203.

With these values for β and ρ, the values for the coefficients in equation (3) are γD = 15.2

and γX = 80.

Next, we construct the values of Xt implied by the data and these parameters by rear-

ranging equation (3) to give

Xt =
1

γX − γD

(
PDt

Ct

− γDDt

Ct

− ϕ

)
(10)

7Note that the coefficient γX that appears in this term is a function of β but not of ρ.
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Observe from this equation (10) that the terms representing the ratio of price per share to

consumption PDt

Ct
and dividends per share to consumption Dt

Ct
are taken straight from the

data. Note that the value of the parameter ϕ affects the level of Xt, but not the time series

for the implied innovations σXϵX,t+1 = Xt+1 −Xt.

We show what our valuation exercise implies for {Xt} in Figure 4. The blue line repro-

duces the data on Dt

Ct
. The red line shows the sequence of values for Xt, given our parameters,

such that the predicted ratio of price per share to consumption from equation (3) matches

the data on the ratio of price per share to consumption.

1920 1940 1960 1980 2000 2020 2040
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0.045
Dividends per Share over PCE, Actual and Long Run Expected

Figure 4: Blue Line: The ratio of dividends per share for the CRSP Value-Weighted Total
Market Index to PCE (Dt

Ct
), 1929-2023. Red Line: The expected long-run ratio of dividends

per share for the CRSP Value-Weighted Total Market Index to PCE, Xt, that rationalizes
the observed price per share of this index using equation (3), 1929-2023.

We use this figure to ask the following question: does the red line for Xt in Figure 4

represent a reasonable model of agents expectations of where the ratio of dividends per share

to consumption will converge in the long run? Or is that red line somehow unreasonably

volatile? We argue that this variation in the red line is reasonable and that, as a result,

there is no excess volatility puzzle. The data on price per share of the stock market can be

accounted for by a reasonable model of expected fluctuations in future dividends per share

with no fluctuations in discount rates and no bubbles.

To substantiate this point, we examine properties of the innovations σXϵX,t+1 = Xt+1−Xt

and σAϵA,t+1 = (Dt+1

Ct+1
−Xt+1)− ρ(Dt

Ct
−Xt) implied by our accounting procedure. We find a
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sample mean value of σXϵXt+1 equal to 3.1×10−5 and a sample standard deviation of 0.0014.

Since we have only 94 annual observations, this sample mean is well within one standard

error of zero. The sample mean of σAϵA,t+1 is −4.5 × 10−7. The sample standard deviation

of these innovations is 0.0027.

In the left panel of Figure 5, we show the estimated autocorrelation function of the

implied series Dt

Ct
−Xt in blue crosses and the model-implied autocorrelation function for this

series given ρ = 0.9447 as red dots (the values of the red dots are simply ρj, where j is the

autocorrelation lag on the x axis). We see that this choice of ρ = 0.9447 gives a reasonable

fit to the persistence of Dt

Ct
−Xt.

In the right panel of Figure 5, we show the autocorrelation function for the implied inno-

vations σxϵXt+1 as blue crosses and the autocorrelation function for the implied innovations

σAϵAt+1 as red dots. This figure shows little autocorrelation of the model-implied innovations

to agents’ expectations.
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Figure 5: Left Panel: The autocorrelation function for the estimated series Dt

Ct
−Xt in blue

and the model-implied autocorrelation function for this series in red given ρ = 0.9447. Right
Panel: The autocorrelation functions for the innovations σXϵX,t+1 in blue and for σAϵA,t+1 in
red.

For completeness, in Figure 6, we show, in the left panel, the sequence of implied inno-

vations to Xt+1 given by σXϵX,t+1 and in the right panel the sequence of implied innovations

to the AR(1) part given by σAϵA,t+1. We do not see any patterns in these model-implied

innovations that would suggest a deviation from rational expectations.
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Figure 6: Left Panel: The innovations σXϵX,t+1 = Xt+1 −Xt uncovered from our valuation
exercise. Right Panel: The innovations σAϵA,t+1 = (Dt+1

Ct+1
− Xt+1) − ρ(Dt

Ct
− Xt) uncovered

from our valuation exercise.

3.3 Is Dividend Growth Forecastable?

Are fluctuations in the latent long-run expectations factor Xt that our model relies on to

account for equity price dynamics plausibly consistent with investors having rational expec-

tations? Or should these fluctuations instead be interpreted as capturing waves or irrational

exuberance or pessimism?

Figure 4 suggests that Xt does help forecast growth in future dividends per share relative

to consumption. The figure indicates that from the start of our sample until around 1990,

investors were expecting dividends per share relative to consumption to decline over time

(the red line is below the blue line). Were these expectations reasonable? Well, dividends

per share relative to consumption did in fact decline steadily over this period! As described

in Gârleanu and Panageas (2023), this is what one would have expected in an economy in

which new firms continuously displace old ones.

From 1990 onward, the model indicates that investors were expecting future ratios of

dividends per share to consumption to exceed the current level (the red line is above the

blue), with this gap being especially pronounced around the dot com stock boom in 2000.

And in fact, from around 2000 onward, dividends per share relative to consumption have been

generally rising, suggesting this optimism about future dividends per share was more than

irrational exuberance. Future research can determine the extent to which this more recent

increasing trend in the ratio of dividends per share to consumption is due to increased firm

profitability versus changes in corporate actions that have had a more mechanical impact on

19



dividends per share.

To investigate dividend growth predictability in a more quantitative fashion, consider

again equation (9). That equation shows a linear model relationship between a price minus

dividend statistic, PDt

Ct
− γX Dt

Ct
and the latent unobserved gap between long-run expected

dividends relative to consumption and the current value of that ratio, Xt− Dt

Ct
. Intuitively, if

the observed price per share at some date t is high relative to current dividends per share, the

model interpretation is that expected long run dividends per share must be high relative to

current dividends. Equation (1) indicates that investors expect this gap to narrow over time,

as long as ρ < 1. Furthermore, model investors expect this gap to narrow in a particular way:

they expect dividends per share relative to consumption to rise and catch up to the long-run

expected value Xt, and they expect no change in Xt given the unit root process in equation

(2). Thus, a high current price-dividend ratio signals rapid expected future dividend growth.

It is easy to compute the model-predicted dividend growth between t and t+ s for different

horizons s. In particular, given equations (1) and (2),

Et

[
Dt+s

Ct+s

]
− Dt

Ct

= (1− ρs)

(
Xt −

Dt

Ct

)
. (11)

Are these model dividend growth predictability properties consistent with the data?

To test this, we run some simple forecasting regressions. In particular, for different

forecasting horizons s, we regress growth between t and t+ s in dividends per share relative

to consumption on Xt − Dt

Ct
. Thus, we estimate coefficients βs for the model

Dt+s

Ct+s

− Dt

Ct

= αs + βs

(
Xt −

Dt

Ct

)
+ ϵt+s. (12)

We also run a similar regression but with Xt+s −Xt on the left-hand side.8

Figure 7 plots the results. The blue line shows that our latent gap variable Xt − Dt

Ct

is strongly predictive of future dividend growth. Average realized growth in dividends per

share relative to consumption is close to the model-implied rational expectations value (the

yellow line) at every forecasting horizon s. The red line in the plot indicates that Xt − Dt

Ct

does not predict growth in Xt. Recall again that Xt − Dt

Ct
is linearly related to PDt

Ct
− γX Dt

Ct
.

Thus, these regressions show that our price-minus-dividend statistic predicts future dividend

growth but does not predict subsequent negative revisions to long-run expected dividends.

This latter finding is consistent with our earlier finding that innovations to ϵX,t+1 appear to

serially uncorrelated.

8We have run these regressions with and without constant terms. The estimated slope coefficients are
very similar in both cases.
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We conclude that dividend growth has a large predictable component, and that fluctua-

tions in equilibrium equity prices can reasonably be interpreted as reflecting rational changes

in expectations about that growth.
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Figure 7: Blue Line: Estimates of the coefficient βs as described in equation (12) for different

forecasting horizons s. The right-hand side variable
(
Xt − Dt

Ct

)
runs from 1929 to 2008 in

each regression. Red line: A similar regression with Xt+1 −Xt on the left-hand side. Yellow
Line: The corresponding rational expectations consistent expected value 1 − ρs (equation
11).

3.4 Sensitivity to Our Model of News Shocks

Our ability to account for the dynamics of the ratio of price per share to consumption for the

CRSP Value-Weighted Index is dependent on two key features of our valuation model. One

is that there are shocks to agents’ expectations of the long-run value of the ratio of dividends

per share to consumption as indexed by innovations to Xt+1. The other is that the impact of

that long-run news on the model-implied price per share as represented by the price-dividend

ratio of a claim to consumption (γX = PC/C) is large.

To demonstrate the quantitative importance of these two assumptions, we first compute

the portion of the value of the ratio of price per share to consumption accounted for by Xt in

our baseline specification of the model, where Xt denotes agents’ expectations of the long-run

value of the ratio of dividends per share to consumption.

The blue line in Figure 8 shows the data for the ratio of price per share to consumption
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PDt/Ct. The red line shows the quantity γXXt+ϕ, which corresponds to the model-predicted

movements in PDt/Ct driven by movements in Xt. We see in this figure that these model-

implied movements in agents’ long-run expectations for dividends account for most of the

fluctuations in stock prices seen in the data. The transitory dynamics of the ratio of dividends

per share to consumption are much less important in our accounting. We conclude from this

figure that innovations to agents’ long-run expectations of the ratio of dividends per share

to consumption are the key driver of stock market volatility in our valuation framework.
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Figure 8: Blue Line: The ratio of price per share for the CRSP Value-Weighted Total Market
Index to PCE (PDt/Ct), 1929-2023. Red Line: The portion of this measure of stock market
valuation accounted for by long-run expectations as measured by γXXt + ϕ, 1929-2023.

Next, we recompute the implied series forXt under the assumption that the price-dividend

ratio for a perpetual claim to consumption γX = PC/C = 25 rather than our baseline value of

80. We do this twice: once leaving the parameters ρ and ϕ unchanged, and once re-estimating

them.

We show the results of this experiment in Figure 9. As in Figure 4, the blue line in Figure

9 reproduces the data on Dt

Ct
. The red line shows the sequence of values for Xt required so

that the predicted ratio of price per share to consumption from equation 3 matches the data

on the ratio of price per share to consumption when γX = PC/C = 25. We regard these

red series as implausibly volatile. Hence, we regard our assumption of a high price-dividend

ratio for a claim to consumption as key to our model’s ability to account for observed stock

market volatility.
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Figure 9: Left Panel: Results when γX = PC/C = 25 and ρ and ϕ take their baseline values
(ρ = 0.9447 and ϕ = −0.620). Right Panel: Results when γX = PC/C = 25 and ρ and ϕ
are recalibrated to give ρ = 0.9367 and ϕ = 0.149. Blue Lines: Dt

Ct
, the ratio of dividends

per share for the CRSP Value-Weighted Total Market Index to PCE, 1929-2023. Red Lines:
Xt, the long-run expected ratio of dividends per share for the CRSP Index to PCE needed
to rationalize the observed price per share of this index using equation (3).

3.5 Sources of the Equity Premium

The realized return on equity from 1929-2023 has been quite high. As we noted above,

the sample average nominal and real returns to the CRSP Value-Weighted Index including

dividends have been 11.6% and 8.6% respectively. Here we examine our model’s implications

for the sources of these high returns.

We focus on our model’s implications for the decomposition of realized returns to equity

in excess of consumption growth as given by

Rx
D,t+1 ≡

Dt+1

Ct+1
+

PD,t+1

Ct+1

PDt

Ct

.

The sample average for this return in excess of consumption growth is 5.3%. Note that the

sample average growth rate of real consumption over this time period is 3.1%.

Given our model for the dynamics of the ratio of dividends per share to consumption

and our affine pricing model in equation (3), we can decompose these realized returns into a

component that was expected one period ahead, and components due to the innovations to

current dividends per share relative to consumption σDϵD,t+1 and the innovations to long-run

expected ratio of dividends per share to consumption σXϵX,t+1 as follows.
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Returns expected one period ahead are given by

Et

[
Rx

D,t+1

]
≡ 1

PDt

Ct

[
(γD + 1)ρ

(
Dt

Ct

−Xt

)
+ (γX + 1)Xt + ϕ

]
.

With our baseline choice of parameters, the sample average of these expected returns in

excess of consumption growth is 2.88%, which is 2.42 percentage points below the sample

average of realized returns in excess of consumption growth. Thus, the model interprets a

significant portion of high realized returns to equity as reflecting unanticipated shocks that

boosted expected cash flow and thus equity value.

Which shocks drive these high realized returns? The portions of realized returns due to

innovations to current dividends per share relative to consumption σDϵD,t+1 and innovations

to long-run expected ratio of dividends per share to consumption σXϵX,t+1 are given by

Rx
D,t+1 − Et

[
Rx

D,t+1

]
=

1
PDt

Ct

[
(γD + 1)σDϵD,t+1 + (γX − γD)σXϵX,t+1

]
(13)

The sample averages of these innovations to returns in excess of consumption growth are

0.31% for the innovations to Dt+1 and 2.11% for the innovations to Xt+1.
9

We see from these calculations that, in our model, a substantial portion of realized returns

to equity are due to in-sample positive innovations to the ratio of dividends per share to

consumption expected in the long run. Note, however, that this positive surprise to returns

is within one standard error of zero given the high volatility of realized returns (19%) and

our sample size of 94 years, so it does not seem inconsistent with rational expectations.

One feature of our affine pricing model for equity is that the risk adjustment to the ratio of

price per share to consumption is additive. This means that model-implied expected returns

to equity one period ahead Et

[
Rx

D,t+1

]
vary over time as the values of the state variables

Dt

Ct
−Xt and Xt move up and down relative to the constant level risk adjustment ϕ. We show

the path for the model-implied expected return to equity in Figure 10.

9Of course, if these two innovations are correlated, then this decomposition is not into two distinct
components.
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Figure 10: Model-implied one-year ahead expected return to equity Et

[
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D,t+1

]
, 1929-2023

3.6 Relationship to the Literature on Forecasting Aggregate Stock

Returns

In Figure 10, we show that our affine model with its baseline calibration produces modest

variation over time in the expected (arithmetic) return to equity due to the additive risk

adjustment for the price of equity in this affine structure. But we see from our pricing

equation (3) that our model attributes all variation over time in the ratio of price per share

to consumption to movements over time in the discounted present value of expected dividends

per share relative to consumption.

How then do our results regarding the role of news about the long-run ratio of dividends

per share to consumption in driving the bulk of the volatility in the ratio of price per share

to consumption relate to the empirical literature on the forecastability or lack thereof of

aggregate stock returns?

The connection between our work and this literature comes in our assumption that the

innovations ϵD,t+1 and ϵX,t+1 are forecast errors relative to all information at time t. Thus

no variable known at t should forecast these innovations. We see from equation (13) that

this statement regarding these innovations to the ratio of dividends per share relative to

consumption is equivalent to the statement that no variable known at t should forecast

realized equity returns in excess of the conditional expectation of these returns implied by

the model at time t.
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Hence, to test our model, we run OLS regressions aimed at forecasting the innovations

ϵX,t+1 and ϵD,t+1 shown in the two panels of Figure 6. We run separate univariate OLS

regressions to forecast these innovations with their lagged values and with the ratio of price

per share to dividends per share, its inverse, and the log of this ratio. We find that none of

these variables are significant in forecasting these innovations. As a result, we conclude that

one does not need to assume that stock returns are forecastable beyond that shown in Figure

10 to account for the observed volatility of the ratio of price per share to consumption.

We examine our model’s implications for estimates of returns forecastability using log

dividend price ratios further in section 5.2 below.

4 An Explicit Pricing Kernel

In equation (3) in the previous section we presented a simple affine valuation model for equity.

To derive that model, we made assumptions regarding the dynamics of the price of claims

to consumption and of the risk adjustment terms represented by the conditional covariances

that we denoted by H
(k)
t . We now present a more complete pricing model to justify these

assumptions.

We begin with standard assumptions regarding the dynamics of consumption growth and

of the pricing kernel used to value assets. Let the log of consumption growth between t and

t+ 1 be given by

gC,t+1 = ḡC + σgCϵC,t+1,

where ḡC measures trend growth, and shocks to the log growth rate σgCϵC,t+1 are drawn from

a Normal distribution with mean zero variance σ2
gC
.

Let the log of the pricing kernel be given by

mt+1 = m̄+ λCϵC,t+1 + λDϵD,t+1 + λXϵX,t+1,

where the parameters λC , λD and λX capture, respectively, the pricing kernel loadings on

the three shocks in the model: innovations to consumption growth ϵC,t+1, and the transitory

and permanent innovations to the ratio of dividends per share to consumption, ϵD,t+1 and

ϵX,t+1, that we introduced in the previous section.

These assumptions for consumption growth and the pricing kernel jointly imply that the

following three variables are all constant over time: (i) the price of a claim to consumption

one period ahead relative to current consumption, (ii) the expected growth of consumption,

and (iii) the riskless interest rate.

In particular, the price of a claim to consumption one period ahead relative to consump-
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tion today is given by

P
(1)
Ct

Ct

= β = Et [exp(mt+1 + gC,t+1)] = exp

(
m̄+ ḡC +

1

2

(
(λC + σgC )

2 + λ2
D + λ2

X

))
. (14)

In equation 14, β does not depend on time so we omit the time subscript. Because this price

is constant over time, Assumption 1 of our simple valuation model is satisfied.

The gross one-period risk-free interest rate implied by this pricing kernel is also constant

and given by

RRF =
1

Et [exp(mt+1)]
= exp

(
−m̄− 1

2

(
λ2
C + λ2

D + λ2
X

))
.

The expected growth rate of the level of consumption is

Et [exp(gC,t+1)] = exp

(
ḡC +

1

2
σ2
gC

)
.

Observe that the expected return on a one-period consumption bond is

RC =
Et [exp(gC,t+1]Ct

P
(1)
Ct

=
exp

(
ḡC + 1

2
σ2
gC

)
β

Thus the expected return on a consumption bond in excess of the risk free rate is

RC −RRF = exp(−λCσgC )

Thus,

β =
Et [exp(gC,t+1)]

RC
=

Et [exp(gC,t+1)]

RRF + exp(−λcσgC )

As we have noted above, in the data, the risk free interest rate appears to be below the

expected growth rate of consumption. For us to have a finite value for the coefficient γX =

β/(1 − β), as is standard, we need to have a sufficiently large risk premium on a claim to

consumption as determined by exp(−λCσgC ).

We do not want to argue that these moments are all constant over time in the data. But

the fact that they are constant in our model allows us to transparently make the point that

it is possible to account for the observed volatility of stock prices based entirely on volatility

of expected cash flows. We leave to future work the project of extending our valuation

framework to richer models for consumption growth or for the pricing kernel under which

these data moments vary over time.
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4.1 Pricing Dividends

We now turn to pricing claims to dividends. We assume that the dynamics of the ratio of

dividends per share to consumption are given by equations (2) and (8). Note that this model

departs from standard asset pricing formulations in that innovations to the ratio of dividends

to consumption are normal rather than log-normal. We now show how to compute prices

of claims to dividends and equity given the dynamics of the pricing kernel and consumption

growth using Stein’s Lemma.

The prices of dividends relative to consumption satisfy the recursive formula that

P
(k)
D,t

Ct

= Et

[
exp(mt+1 + gCt+1)

P
(k−1)
D,t+1

Ct+1

]
(15)

We guess and verify that the price of a claim to dividends k periods ahead has the following

form:
P

(k)
Dt

Ct

= Ak

(
Dt

Ct

−Xt

)
+BkXt +Hk (16)

We solve for the coefficients Ak, Bk, and Hk recursively using equation 15 and the method

of undetermined coefficients as described in Appendix C. We show that the coefficients Ak, Bk

satisfy the recursion

Ak = βρAk−1 = (βρ)k

Bk = βBk−1 = βk

and the coefficients Hk satisfy

Hk = β (Hk−1 + λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

with H0 = 0.

Note that these coefficients are independent of date t. We can then construct the value

of a claim to equity as in equation (3) from

PDt

Ct

=
∞∑
k=1

P
(k)
Dt

Ct

= γD

(
Dt

Ct

−Xt

)
+ γXXt + ϕ,

where γD = βρ
1−βρ

, γX = β
1−β

, and ϕ =
∑∞

k=1Hk. Note that Hk and thus ϕ are constant over

time, so this affine model satisfies Assumption 2 of our valuation framework.
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5 An Exponentially Affine Model

In Sections 3 and 4, we derived an affine model for the value of equity relative to consumption

based on the assumption that the level of the ratio of dividends per share to consumption

followed an AR(1) with a shifting endpoint. The more commonly made assumption in the

asset pricing literature is that the log of the ratio of dividends per share to consumption

follows a process with normal innovations so that innovations to the level of the ratio of

dividends per share to consumption are log-normal rather than normal. With such a model,

the conditional covariances that we denote by the terms H
(k)
t are not constant over time and

thus our simple valuation equation (3) does not apply.

In this section, we consider an exponentially affine model and develop an alternative

argument that there is no excess volatility puzzle. To build this model, we make an alternative

assumption regarding the dynamics of log of the ratio of dividends per share to consumption,

denoted by dct = log(Dt

Ct
) that is motivated by the work of Gârleanu and Panageas (2023).

This work emphasizes the role of ongoing entry by new firms via initial public offerings

in driving down the share of the total stock market represented by the index of price per

share as shown in Figure 2. This force of initial public offerings by new firms (or seasoned

issuances by incumbent firms) imparts a potentially fluctuating trend negative growth rate to

the logarithm of the ratio of dividends per share to consumption. At the same time, changes

in the payout policies of incumbent firms to favor share repurchases over dividends alter

net share issuance by these incumbent firms. This force imparts a potentially fluctuating

trend positive growth rate to the logarithm of dividends per share to consumption if share

repurchases are large enough. Changes over time in the strength of these two forces appear

as changes in the rate of growth of the logarithm of dividends per share to consumption and

anticipated changes in this growth rate are manifest in the logarithm of the aggregate price

dividend ratio.
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Figure 11: Left Panel: The logarithm of the ratio of dividends per share to PCE expenditures
for the CRSP Value-Weighted Total Market Index 1929-2023. Right Panel: The logarithm
of the ratio of price per share to dividends per share for the CRSP Value-Weighted Total
Market Index 1929-2023.

We show the data that are used in this alternative valuation model in Figure 11. In

the left panel of that figure, we show the logarithm of the ratio of dividends per share to

consumption. It is clearly evident in that figure that the trend growth in this log ratio has

changed over time. In the right panel of Figure 11, we show the logarithm of the ratio

of price per share to dividends per share. It is clearly evident in that figure that this log

price-dividend ratio has also shown large low frequency changes over time. The aim of our

exponentially affine valuation model is to account for these fluctuations in the logarithm of

the ratio of price per share to dividends per share in the right panel based on a model of

fluctuations in trend growth of the log ratio of dividends per share to consumption in the left

panel.

Our exponentially affine model is specified as follows.

We assume the same processes for the logarithm of the pricing kernel and consumption

growth as in Section 4. This results in the same prices for claims to consumption and risk free

interest rates as in that section. With these assumptions, the price of a claim to consumption

one period ahead relative to consumption today is given as before by equation (14). Note

that this price is constant over time, so Assumption 1 of our first affine model is satisfied.

We now let the variable xt denote the deviation of the trend rate of growth in dct over

time. As discussed above, we interpret movements in xt as being driven primarily due to

fluctuations in the rate of entry by new firms to public markets via IPOs and fluctuations in

the rate of net share issuance by incumbent firms.
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We now assume that the log of the ratio of dividends per share to consumption, dct,

evolves according to the following process:

dct+1 − dct = x̄+ xt + σdϵd,t+1

Here x̄+xt denotes the current expected growth of dct between t and t+1. This expected

growth has two components: x̄ denotes the unconditional average growth of dct, and xt

denotes the amount of extra growth currently expected in excess of that long run average.

This excess expected growth xt evolves according to

xt+1 = ρxt + σxϵx,t+1

where ρ ≤ 1.

Like the previous model, this one also features two shocks. The first, ϵd,t+1, captures

growth in realized dividends between t and t + 1 in excess of what was expected at t. The

second, ϵx,t+1 is a news shock at t + 1 that changes expected dividend growth from t + 1

onward. These two shocks are standard normal random variables that are independent over

time and have contemporaneous correlation ρdx.

Again, the price of a claim to dividends at horizon k relative to current consumption

satisfies the recursion in equation (15). We guess and verify that these prices are given by

P
(k)
D,t

Ct

=

(
P

(1)
C

C

)k

exp(Gk)Et

[
Dt+k

Ct+k

]
(17)

We prove that the prices of dividends relative to consumption have this form below.

This pricing formula gives us two main differences from our first affine pricing model.

First, in this exponentially affine case, our general pricing formula (5) together with

equation (17) gives us that

Covt
(
Mt,t+k

Ct+k

Ct

,
Dt+k

Ct+k

)
=

(
P

(1)
C

C

)k

Et

[
(exp(Gk)− 1)

Dt+k

Ct+k

]

so that this covariance term is no longer constant over time. Thus, our Assumption 2 is not

satisfied unless Gk = 0.

Second, with our log-normal model of innovations to dividends relative to consumption,

we have

Et

[
Dt+k

Ct+k

]
= exp

(
dct + kx̄+

(1− ρk)

1− ρ
xt

)
exp(Jk) (18)
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where

Jk =
1

2
Var (dct+k − Etdct+k)

With these two modifications of our first affine model, in the exponentially affine case we

can write equation (17) as

P
(k)
D,t

Ct

= β̃k exp

(
dct +

(1− ρk)

1− ρ
xt

)
and we can write the price to current dividend ratio for a claim to dividends at horizon k as

P
(k)
D,t

Dt

= β̃k exp

(
(1− ρk)

1− ρ
xt

)
(19)

where

β̃k ≡

(
P

(1)
C

C

)k

exp(Gk + Jk + kx̄).

In Appendix D we show that the terms Gk satisfy the recursion G0 = 0 and

Gk = Gk−1 + (λd + λxρdx)σd + (λx + λdρdx)

(
1− ρk−1

1− ρ

)
σx + λdλxρdx

while the terms Jk satisfy the recursion J0 = 0 and

Jk = Jk−1 +
1

2

(
(1− ρk−1)

1− ρ

)2

σ2
x +

1

2
σ2
d +

(
(1− ρk−1)

1− ρ

)
σxσdρdx.

We solve for the model’s implications for the aggregate price-dividend ratio by summing

equation (19) across horizons k to get

log

(
PDt

Dt

)
= log

(
∞∑
k=1

β̃k exp

(
(1− ρk)

1− ρ
xt

))
. (20)

We use this equation to solve for the sequence of values of {xt} that exactly replicate the

ratio of the price per share of the CRSP Value-Weighted index to consumption expenditure.

5.1 A Second Excess Volatility Exercise

To use equation (20) to conduct our second excess volatility exercise, we must choose the

parameters ρ and the sequence of parameters β̃k. These parameters β̃k are implied by the full

set of model parameters β, ρ, σd, σx, ρdx, λd, λx. They do not necessarily decay geometrically
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as would be consistent with a constant discount rate. We present a full calibration of this

model in Appendix F.

Here we consider an approximation to our model in which we assume that the terms β̃k

decay at a geometric rate so that we have β̃k = β̃k. In this case, to use equation (20) to

solve for the sequence of {xt} that reconciles the data on the ratio of price per share to

dividends per share on the left side of that equation with the data on the log of the ratio of

dividends per share to consumption on the right side of that equation, we need choose only

two parameters: ρ and β̃ where β̃/(1− β̃) corresponds to the price dividend ratio predicted

by our model when xt = 0. We use this approximation with geometric discounting β̃k = β̃k

here to keep the number of parameters that need to be chosen to a minimum.

We first consider model results when ρ = 0.99 and β̃/(1− β̃) = 30.125. With this value of

β̃, the sample mean of the sequence {xt} that solves equation (20) to match the data on the

price dividend ratio is equal to zero. With this value of the parameter ρ, the log price dividend

ratio given in equation (20) is close to non-stationary. The role of this assumption will be

come more apparent when we discuss the arguments of Cochrane (2008) for interpreting the

results of Campbell-Shiller regressions predicting log returns and growth in dividends per

share in Section 5.2 below.

The model-implied series for the trend growth in the log ratio of dividends per share to

consumption as given by x̄ + xt is shown in Figure 12. In this figure, x̄ = 0.0097 is set

equal to the average realized growth in the log ratio of dividends per share to consumption

over the sample. For completeness, we show the autocorrelation function for the model

implied innovations σxϵx,t+1 and σdϵd,t+1 as well as the realized values of these innovations

in Appendix E. These plots suggest that the innovations ϵx,t+1 are not serially correlated. It

appears that there is some moderate negative serial correlation in the innovations ϵd,t+1 that

might be addressed by including some transitory dynamics of dct+1 in our model above and

beyond the persistent trend movements in xt. We leave this for future research.
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Figure 12: The trend growth rate of the logarithm of the ratio of dividends per share to
consumption x̄ + xt implied by observed price dividend ratios. Here x̄ is set equal to the
mean growth of log dividends per share to consumption over the full sample and xt is solved
from equation (20). The parameters β̃k are set equal to β̃k with β̃/(1− β̃) = 30.125

We now turn to the questions of whether these valuation model-implied fluctuations in

trend growth of the log ratio of dividends per share to consumption are reasonable and

whether they actually forecast future growth in the log ratio of dividends per share over

consumption.

With regard to the first question, in Figure 12 we see that one needs only modest variation

in the trend growth rate of the log ratio of dividends per share to consumption to account

for observed fluctuations in the log price dividend ratio. In the figure, we see that the

exponentially affine valuation model requires an increase in trend growth of dct on the order

of 1.5 percentage points to account for the data on log price-dividend ratios. We note that

in the data on the log ratio of dividends per share to consumption shown in the left panel

of Figure 11, the mean annual growth rate of dct over the period 1929-1984 is −2.04% while

its mean growth rate over the period 1985-2023 is 0.6%. Thus, the change in realized trend

growth rates of the log ratio of dividends per share to consumption in the data is larger

than the expected change needed to account for the secular change in the log price dividend
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ratio in the data shown in the right panel of Figure 11. On this basis, we conclude that the

valuation model-implied fluctuations in trend growth of the log ratio of dividends per share

to consumption shown in Figure 12 are reasonable.

It is interesting to note in Figure 12 that the dramatic secular increase in the log price-

dividend ratio in 2000 evident in the right panel of Figure 11 corresponds in Figure 12 to

plausible jump in model-implied expected growth of the log ratio of dividends per share to

consumption. Thus, our valuation model gives a simple explanation of the persistent increase

in the log price dividend ratio after the late 1990’s based on a persistent change in the trend

growth of the log ratio of dividends per share to consumption.10 We believe that this shift

in the trend growth of the log ratio of dividends per share to consumption is driven largely

by changes in the pace of corporate actions altering the ratio the index of price per share to

total market capitalization. We base this conjecture on the plot of this ratio shown in Figure

2. There we see that the ratio of the index of price per share to total market capitalization

fell steadily until about 2000 and has remained fairly stable since that time. Thus, it appears

that, on net, the rate at which entry by new firms and net equity issuance by incumbent

firms dilutes the holdings of an index investor has slowed in a persistent manner after 2000.

With regard to the second question of whether these valuation-model implied fluctuations

in xt actually forecast future growth in the log ratio of dividends per share to consumption,

we argue that the glass is half full.

The conventional wisdom expressed in Cochrane (2011) and Campbell (2018) is that the

log price-dividend ratio shows little or no relationship to future growth in dividends per share.

We use our model to review that evidence from simple Campbell-Shiller style regressions

in Section 5.2 below. Specifically, we use our valuation model to conduct a Monte-Carlo

exercise to argue that these regressions are not conclusive largely because the uncertainty

regarding these regression estimates in samples of 94 years is simply too large to allow for

firm conclusions. But, of course, this statement is not new to the literature.

Casual examination of the two panels of Figure 11, however, suggests that at low fre-

quencies, changes in the trend growth of the log ratio of dividends per share to consumption

do follow changes in the log ratio of price per share to dividends per share. To examine

the potential role of the log ratio of price per share to dividends per share in forecasting

subsequent growth in the log ratio of dividends per share to consumption at low frequencies,

10See Lettau and Van Nieuwerburgh (2008) and the literature cited therein for a discussion of this apparent
secular change in the log price-dividend ratio as a change in the long-run mean of the price dividend ratio.
Our model accounts for this observation with very persistent changes in xt.
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we estimate regressions of the form

1

S + 1
(dct+1+S − dct) = α + βS

g

1

S + 1

S∑
s=0

pdt−s + ϵt+1 (21)

for various values of S. The variable on the left side of this regression is an average of annual

growth rates of dct+s going forward from date t and the explanatory variable on the right

side of this regression is an average of the log price-dividend ratio leading up to date t.

We present results of these regressions for various values of S here

Results of Regressions (21) for various S

S β̂S
g p value R2

0 0.0034 0.917 0.0001

1 0.0211 0.297 0.0118

3 0.0210 0.122 0.0258

5 0.0215 0.055 0.0393

9 0.0269 0.0061 0.0789

We see in these results for S = 0, the standard finding that the log price-dividend ratio

at t does not forecast the growth in the log ratio of dividends per share to consumption from

t to t + 1. Yet we see that for higher values of S, the estimated slope coefficients β̂s
g are

consistent with predictable growth in the log ratio of dividends per share to consumption

with the estimated coefficient not far from the model-implied theoretical coefficient of 0.0418.

Moreover, the predictive power and apparent significance of these estimates appears to grow

with the horizon S.

On the basis of these regressions, we argue that there is evidence for the hypothesis that

the log price-dividend ratio does forecast future growth in the log ratio of dividends per share

to consumption roughly in line with the slope predicted by our exponentially affine model.

5.2 Monte Carlo Estimates of Return Forecastability

We now consider the question of how we might reconcile our model with weak evidence in the

literature that stock returns are forecastable using the log dividend price ratio as a forecasting

variable while growth in log dividends per share relative do not appear forecastable with the

log price dividend ratio?

Specifically, we note that in the data from 1929-2023, a regression of the form

rwd
t+1 − log(PCEt+1) + log(PCEt) = α + βrpdt + ϵt+1 (22)
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where the left hand side is the log of realized returns on the CRSP Value Weighted Index

in excess of realized growth in PCE expenditures and pdt is the log of the ratio of price per

share to dividends per share yields an estimated slope coefficient of β̂r = −0.07343.

At the same time, in the data from 1929-2023, a regression of the form

dct+1 − dct = α + βgpdt + ϵt+1 (23)

yields an estimate of β̂g = 0.0034.

And finally, in the data from 1929-2023, a regression of the form

pdt+1 = α + βpdpdt + ϵt+1 (24)

yields an estimate of β̂pd = 0.9535.

We can get a sense of how the parameters of our exponentially affine valuation model

translate into model predictions for these regression parameters by taking a first order ap-

proximation to equation 20 around the point xt = 0. We can write that approximation

as

pdt ≈ log(γ̄) + γxt

where

γ̄ =
∞∑
k=1

β̃k

is the price dividend ratio when xt = 0 and

γ =
1

γ̄

∞∑
k=1

β̃k
(1− ρk)

1− ρ

In the event that we approximate discounting in the model with the assumption that β̃k = β̃k,

we have

γ =
1

1− β̃ρ

With these approximations, we have model predictions for these regression coefficients of

βpd = ρ and βg = 1 − β̃ρ. With the further approximation of log returns as is standard in

Campbell-Shiller regressions, we have that the model prediction for βr = 0.

We see from these model calculations that there is a conflict between estimates of the

slope coefficients β̂r, β̂g, β̂pd in the data and the theoretical values of these coefficients implied

by our approximate model.

To evaluate the extent to which standard Campbell-Shiller regressions have sufficient
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power to distinguish our exponentially affine model with approximately constant expected

log returns from alternatives with time-varying expected returns, we conduct a Monte Carlo

exercise with our exponentially affine model in which we simulate 100,000 samples of 94

years each and compute histograms of slope estimates from the regressions (22), (23), and

(24). We use discount rates β̃k = β̃k with long-run price dividend ratio β̃/(1 − β̃ = 30.125

and ρ = 0.99 and we set the covariance matrix of the innovations ϵx,t+1, ϵd,t+1 in our model

simulations equal to the sample covariance of these model-implied innovations in the data.

First consider the histogram of estimates of the slope coefficient β̂pd from regression 24

estimating the persistence of the log ratio of price per share to dividends per share shown

in the left panel of Figure 13. The theoretical value of this coefficient should be close to

ρ = 0.99 (the true model is slightly non-linear). As illustrated beautifully in Sims and Uhlig

(1991), estimates of this persistence parameter are biased downwards and have an asymmetric

distribution when ρ is close to one. These two features of the distribution estimates of β̂pd

are clearly evident in this figure.

In the right panel of Figure 13, we show the histogram of estimates of the slope coefficient

β̂r from regression (22) relating the log price-dividend ratio to subsequent realized returns.

The theoretical value of this coefficient should be close to zero. It is clear in the figure that

the distribution of this estimated coefficient forecasting returns is biased towards a finding of

return predictability. This is a reflection of the bias identified by Stambaugh (1999) arising

from the fact that the expected change in the log price dividend ratio enters into expected

returns and, as we have just seen, estimates of the expected change in the price dividend

ratio are biased. For more information on this see the discussion in Chapter 5.4 of Campbell

(2018). Note that the empirical estimate of this coefficient of β̂r = −0.07343 lies well within

the distribution of estimates of this parameter implied by our model.
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Figure 13: Left Panel: Histogram of estimates of β̂pd from autocorrelation regression (24)
for the log price-dividend ratio from 100,000 simulations of 94 observations each from our
exponentially affine model. Right Panel: Histogram of estimates of β̂r from return forecasting
regression (22) from 100,000 simulations of 94 observations each from our exponentially affine
model

Given the difficulties of determining whether returns are forecastable using this type of

regression analysis, Cochrane (2008) proposed to focus on estimates of the predictability

of cash flow growth. As we note above, in our exponentially affine model, a regression of

the form (23) using the log price dividend ratio to forecast subsequent growth in the log

ratio of dividends per share to consumption should have a theoretical coefficient close to

1 − β̃ρ = 0.0418. And yet the empirical estimate of this slope coefficient is β̂g = 0.0034,

which is very close to zero. Cochrane (2008) pointed to this apparent lack of forecastability

of growth in log dividends per share as evidence in favor of the hypothesis that log returns

are forecastable.

We do not find that this statement is correct when the log price-dividend ratio is highly

persistent. In Figure 14 we show the histogram of estimates of the coefficient β̂g from regres-

sion (23) from our Monte Carlo Exercise. We see that estimates of zero for this coefficient are

well within the distribution of estimates implied by our model, as are many other estimates.

Thus, we do not see these regressions as useful for distinguishing the drivers of valuation.
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Figure 14: Histogram of estimates of β̂g from regression (23) using the log price-dividend
ratio to forecast subsequent growth in the log ratio of dividends per share to consumption
from 100,000 simulations of 94 observations each from our exponentially affine model.

6 Conclusion

The claim by Shiller (1981) that data on price per share for the stock market is too volatile to

be accounted for by subsequent fluctuations in dividends has had a large impact on subsequent

work in asset pricing. Our aim in this paper is to call into question this basic claim that the

stock market is excessively volatile. To do so, we present two simple and tractable models of

the dynamics of dividends per share that can be used to account for realized values of price

per share for the CRSP Value-Weighted Total Market Index over the period 1929-2023 with

constant discount rates.

We further see both of our valuation models as providing evidence that comparisons of

stock valuations as measured by the ratio of price per share to consumption relative to the

current ratio of dividends per share to consumption do forecast subsequent growth in the ratio

of dividends per share to consumption. Because we do not have direct evidence on investors’

expectations of future dividends per share, we cannot definitively say whether stock prices
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are driven by news about future cash flows or news about future discount rates. We simply

see our study as a basis for arguing that simple asset pricing models based largely or even

entirely on news about future cash flows are useful frameworks for understanding the market

value of U.S. corporations.

At a broad brush level, our two valuation models provide two different accounts of the

evolution of the ratio of price per share to dividends per share over the last century.

Our affine valuation model accounts for the secular rise in the ratio of price per share to

dividends per share shown in the right panel of Figure 3 on the basis of the assumption that

investors recognized early on in the century that the ratio of dividends per share relative

to consumption was well above its long-run level (as shown in Figure 4) and that this ratio

would be slowly driven down towards its long run level over the course of the next 50 years or

so. After that time, according to our affine model, the observed ratio of dividends per share

to consumption has been close to its long-run level, so further changes in the ratio of price

per share to consumption have been accounted for primarily by shifts in agents expectations

of the ratio of dividends per share to consumption in the long run.

Our exponentially affine model accounts for the secular rise in the log ratio of price per

share to dividends per share shown in the right panel of Figure 11 based on persistent shifts

in the trend growth rate of the log ratio of dividends per share to consumption shown in the

left panel of that Figure.

What both models have in common is that these secular shifts in the dynamics of the ratio

of dividends per share to consumption are interpreted as being driven primarily by changes

in the pace at which corporate actions dilute the holdings of an index investor relative to

the total market capitalization of the stock market as shown in Figure 2. This observation

raises, in our minds, the question of whether it is fruitful to continue to use data on price per

share and dividends per share to study the dynamics of stock market valuations. We have

seen in these data that the ratio of price per share to dividends per share is highly persistent,

as are the trend growth rates of the ratio of dividends per share to consumption. These low

frequency trends in these data make it difficult to draw conclusions about the drivers of stock

market volatility from these data given the limited number of observations available. To the

extent to which the low frequency trends that we see in the growth rate of dividends per

share to consumption and the ratio of price per share to dividends per share are driven by

low frequency trends in the pace of corporate actions, it seems worthwhile to consider using

other data sources.

One possibility is to use a measure of total market capitalization as a measure of value

and a measure of total cash flows to equity holders as a measure of cash flows relevant for

valuations. Dichev (2006) outlines a simple method for measuring those cash flows that
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we describe in Appendix B. In Figure B.1, we show these cash flows and show that they

correspond closely to those measured in Davydiuk et al. (2023). We see in that figure that

these total cash flows to an investor who continuously holds the market are very volatile.

Perhaps future research could reassess the role of expected cash flow growth in driving market

valuations using these data as the ratio of total cash flows to total market capitalization

should be much less persistent than the corresponding ratio of dividends per share to price

per share.

Larraine and Yogo (2008), Greenwald, Lettau, and Ludvigson (2023), and we, in a com-

panion paper Atkeson, Heathcote, and Perri (2024) pursue a third option, which is to use

measures of total cash flows to owners of all corporations. This prior work finds, and in own

work we find, that the appropriate measure of the ratio of cash flows to value in that data

shows no trends over time and is consistent with quite a lot of cash flow growth predictability.

We argue that research going forward should focus on using these alternative data sets,

or perhaps data not considered here, if progress is to be made in uncovering the drivers of

stock market volatility.
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Appendices

A The Argument for Excess Volatility in Shiller (1981)

In this appendix, we review the criticisms of the interpretation of Figure 1 in Shiller (2014)

updating Shiller (1981) as evidence for excess volatility levied in Kleidon (1986) and Marsh

and Merton (1986) on the grounds that both the levels of dividends per share and price per

share are non stationary. We focus on the criticisms of Kleidon (1986).

Let the realized data on price per share be given by {Pt}. Let the realized data on

dividends per share be given by {Dt}.
Consider the following simple valuation model. In this valuation model, assume that the

logarithm of dividends per share, denoted by dt, evolves according to

dt+1 = g̃ + dt + σϵt+1

where ϵt+1 ∼ N(0, 1) and g̃ is a constant. With this assumption, we have

EtDt+1 = (1 + g)Dt

and, more generally

EtDt+k = (1 + g)kDt

where

g = exp(g̃ +
1

2
σ2)− 1

With this model of expected dividends, create the model’s implications for price per share

based under constant discounting as

Pt =
∞∑
k=1

(1 + r)−kEtDt+k =
1 + g

r − g
Dt (25)

The prediction for the price constructed in Shiller (1981) and Shiller (2014) under the

assumption that have an infinite realized sequence of dividends is

P ⋆
t =

∞∑
k=1

(1 + r)−kDt+k

That is, we use realized dividends without the expectation.

In this case, both Pt and P ⋆
t are non-stationary. But, theoretically, since the model’s
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implication for the price Pt is directly proportional to the currently realized dividend Dt, we

have that the standard deviation of log changes in price is given as

Std (log(Pt+1)− log(Pt)) = σ

In contrast, it is straightforward to verify via a Monte Carlo simulation that the standard

deviation of log changes in the predicted price constructed using the method above is

Std
(
log(P ⋆

t+1)− log(P ⋆
t )
)

is typically at least an order of magnitude smaller than σ. Kleidon (1986) shows several

results from such Monte Carlo simulations that lead to figures with these simulated data

very similar in appearance to those in Shiller (1981).

The issue of why this approach to assessing stock market volatility goes wrong can be seen

clearly from equation 25. If dividends are a random walk, then news that arrives between t

and t + 1 in the form of the shock ϵt+1 moves agents’ expectations of future dividends out

into the infinite future since

EtDt+k = Dt

and

Et+1Dt+k = Dt+1

In contrast, if we follow the procedure in Shiller (1981) to construct P ⋆
t , then we are

effectively assuming that agents’ expectations of future dividends never move at all. That is

E⋆
tDt+k = Dt+k

and

E⋆
t+1Dt+k = Dt+k

The only updating to P ∗
t that occurs is that the first dividend is dropped and the discounting

of future dividends is update by (1 + r). That is P ∗
t satisfies

P ⋆
t =

1

1 + r

[
Dt+1 + P ⋆

t+1

]
This equation implies that

log(P ⋆
t+1)− log(P ⋆

t ) = log(1 + r)− log

(
1 +

Dt+1

P ⋆
t+1

)
≈ r − Dt+1

P ⋆
t+1
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Given that {log(Dt)} is assumed to be a random walk with a constant drift and we have

assumed a constant discount rate r, one should not expect Dt+1

P ⋆
t+1

to be variable. It varies only

because of random runs of positive or negative values of ϵt leading to positive or negative

runs of realized dividend growth above or below the mean. Monte Carlo simulation reveals

this variance to be very small.

B How a value-weighted stock index is constructed

The concepts of price per share and dividends per share for a broad stock market index are

constructed to meet specific needs that are not the same as those of an academic researcher

seeking to understand fluctuations in the value of the stock market. In particular, the measure

of price per share represents the dynamics of the value of and payouts to the portfolio of an

investor who follows a very specific trading strategy that does not correspond to equilibrium

notions of “holding the market” as in Sharpe (1964) and Lucas (1978). An investor who

invested to track the CRSP Value-Weighted Total Market Index, would end up holding a

constantly changing share of the total market capitalization of that index, with the changes

in that share of the market held engineered specifically to reduce the volatility of the cash

flows to that investor, leaving that investor only with payouts from dividends. We argue, then,

that it is no surprise that empirical work using these data would arrive at the conclusion that

stock prices move too much to be justified by subsequent changes in payouts. This finding

is hard-wired into the construction of the data.11

An alternative approach to assessing whether the volatility of the stock market is too

high relative to the volatility of the cash flows going to someone invested in the market is to

examine the cash flows that would flow to an investor who followed an “equilibrium” strategy

of holding a constant fraction of the total market capitalization of the stocks in a broad stock

index at every moment in time. This is the portfolio strategy that we take as the equilibrium

strategy of “holding the market”. As we describe next, it is a simple exercise to construct

these cash flows using data on the index returns including dividends, index returns excluding

dividends, the level of the index in question, and the total market capitalization of the stocks

in the index. This methodology is presented in Dichev (2006) who notes that it is commonly

used to in the mutual fund industry to reconcile fund returns, fund flows, and fund market

values.

When we do so, using the CRSP Value-Weighted Total Market Index as an illustration, we

11This concern is heightened by the recognition that in the decades following World War II, firms smoothed
their dividend payouts. See Marsh and Merton (1986) and Chen, Da, and Priestly (2012) and the papers
cited therein for a discussion of the impact of dividend smoothing on variance bounds tests and predictive
regressions.
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find that the cash flows associated with this “equilibrium” investment strategy are massively

volatile, calling into question the conclusion that stock prices move too much to be justified

by subsequent movements in dividends. It is straightforward to illustrate the same findings

with other broad value-weighted stock indices.

To begin, it is helpful to review the basics of the construction of a broad value-weighted

stock market index. We do that now.

At any point in time, t, a value-weighted stock index, denoted here by X(t) is given as a

time-varying fraction of the total market capitalization of the stocks in the index. That is,

if we let Ω(t) be the set of stocks in the index, and pi(t) and si(t) be the prices and shares

outstanding for those stocks, then the total market capitalization of the stocks in the index,

denoted here by TMC(t), is given by

TMC(t) =
∑
i∈Ω(t)

pi(t)si(t) (26)

The level of the index at t, which we denote by X(t), is given by

X(t) =
1

θ(t)
TMC(t) (27)

where θ(t) is called the “divisor” for the index at t. The argument t in θ(t) is there to denote

that this divisor changes over time. Note here that 1/θ(t) represents the fraction of the total

market capitalization of the stocks in the index held at t by an investor tracking the level of

index rather than the total market capitalization of the stocks in the index.

The gross value-weighted return on this index between periods t and t+ 1 not including

dividends is given by

Rno dividends
t,t+1 =

∑
i∈Ω(t)

(
pi(t)si(t)∑

j∈Ω(t) pj(t)sj(t)

)
pi(t+ 1)

pi(t)
(28)

If we denote by di(t+1) the dividend paid by firm i at time t+1 to someone who owned

the share at time t, then aggregate dividends paid in t+ 1 are given by

D(t+ 1) =
∑
i∈Ω(t)

di(t+ 1)si(t) (29)

and dividends per share are given by

DPS(t+ 1) =
1

θ(t)
D(t+ 1) (30)
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The gross value-weighted return on this index between periods t and t + 1 including

dividends is given by

Rw dividends
t,t+1 =

∑
i∈Ω(t)

(
pi(t)si(t)∑

j∈Ω(t) pj(t)sj(t)

)(
pi(t+ 1) + di(t+ 1)

pi(t)

)
(31)

The divisor at t + 1, denoted by θ(t + 1) is chosen so that the change in the index level

from t to t+ 1 corresponds to the gross value-weighted return without dividends, i.e.

X(t+ 1)

X(t)
= Rno dividends

t,t+1 (32)

From equation 28, this implies that

X(t+ 1) =
1

θ(t)

∑
i∈Ω(t)

pi(t+ 1)si(t)

With this construction, it is also the case that the gross value-weighted return including

dividends corresponds in the natural manner to the returns defined in terms of price per

share and dividends per share. That is

X(t+ 1) +DPS(t+ 1)

X(t)
= Rw dividends

t,t+1 (33)

What we have in equations 32 and 33 is that data on the price per share and dividends

per share for the index can be used to reproduce the value-weighted returns on the stocks

in the index without and with dividends between periods t and t + 1 in a natural manner

consistent in notation as if the entire index were a single firm.

But how is this construction achieved? In reality, the stocks in the index are not a single

firm since some stocks are added and some a removed and since the incumbent firms in the

index often take actions to change the number of their shares outstanding. To deal with

these issues, the divisor of the index is adjusted so that equation 27 is also satisfied in period

t+ 1. This approach to index construction implies that the divisor changes from period t to

period t+ 1 according to

θ(t+ 1) =

∑
i∈Ω(t+1) pi(t+ 1)si(t+ 1)∑

i∈Ω(t) pi(t+ 1)si(t)
θ(t) (34)

It is here in equation 34 that we see that the construction of the index implies a certain

trading strategy that does not correspond to holding a constant share of the market capi-
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talization of the stocks in the index. An investor who aims to hold a portfolio that tracks

this index would be required to adjust the fraction of the total market capitalization of the

stocks in the index that he or she held from 1/θ(t) to 1/θ(t+ 1) as indicated in equation 34.

That is, if, at t+ 1, the shares outstanding for the firms in the index at t+ 1 have increased

when evaluated at t + 1 prices, either due to incumbent firms issuing more shares on net

(raising capital), or due to firms being added to the index at t+ 1 being more valuable than

firms leaving the index between t and t + 1, the divisor rises and the implied share of the

total market capitalization of the stocks in the index held by an investor tracking the index

falls. Likewise, if incumbent firms buy back their shares (returning capital), of if firms being

added to the index at t+1 are less valuable than firms leaving the index between t and t+1,

the divisor falls and the implied share of the total market capitalization of the stocks in the

index held by an investor tracking the index rises.

More generally, there is a long list of circumstances that lead to changes in the number of

shares outstanding for the firms in the index between t and t+1 that are referred to as Cor-

porate Actions. These include Initial Public Offerings, Delistings, Mergers and Acquisitions,

Reverse Mergers/Takeovers, Tendered Shares, Spin-Offs, Rights Offerings, and certain trans-

actions connected with warrants, options, partly paid shares, convertible bonds, contingent

value rights, etc. The staff at CRSP (and S&P Dow Jones Indices for their indices) invest

considerable resources tracking all of these events and adjusting the index divisor accordingly.

What this index construction methodology implies is that an investor who aims to hold

a portfolio that tracks the level of the index over time will not participate in any of these

corporate actions. As a result, this investor receives only the cash flows associated with

dividends paid at t + 1 by incumbent firms in period t. This investor will not receive the

cash flows associated with new share issuance or share buybacks by these incumbent firms

nor the cash flows associated with the entry and exit of firms from the index (or any of the

other possible corporate actions). Instead of participating in these cash flows, an investor

who aims to track the level of the index simply adjusts the fraction held of the total market

capitalization of the stocks in the index rather than contribute or remove cash as indicated

by these corporate actions.

How then can we use the data from the index to recover the cash flows received by an

investor following the equilibrium trading strategy of “holding the market” at all times. To

do this, we invoke the theorem of Miller and Modigliani (1961) that asserts that changes

in a firm’s dividend policy to return cash to share holders in the form of net buybacks do

not change either the returns or the market capitalization of the firm. Using this principle,

following Dichev (2006), we construct the additional cash flows to accruing to an investor

received by an investor following the equilibrium trading strategy of “holding the market” at
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all times, denoted here by CAFCt+1 for corporate action cash flows using the equation

CACF (t+ 1) = Rno dividends
t,t+1 TMC(t)− TMC(t+ 1) (35)

We then have the total cash flows to an equilibrium investor holding the market at t+ 1 are

D(t+ 1) + CACF (t+ 1).

This equation 35 is an accounting identity that follows from a reconciliation of returns on

the market from t to t+1 and the change in market capitalization of the market as a whole.

This accounting identity implies that these cash flows from corporate actions can be stated

equivalently as

CACF (t+ 1) =
∑
i∈Ω(t)

pi(t+ 1)si(t)−
∑

i∈Ω(t+1)

pi(t+ 1)si(t+ 1)

That is, these are the cash flows that arise from all changes in the number of shares out-

standing from time t to time t+ 1 when valued at prices at time t+ 1.

Now, what impact do these calculations have on the ratio of dividends per share to price

per share as measured by this index? We have by definition that the ratio of dividends per

share to price per share is equal to the ratio of total dividends to total market capitalization

of the stocks in the index, i.e.
DPS(t)

X(t)
=

D(t)

TMC(t)

This then implies that

DPS(t)

X(t)
=

D(t) + CACF (t)

TMC(t)
− CACF (t)

TMC(t)
(36)

Consider the implications of Miller and Modigliani (1961) for the terms in this equation.

In their analysis, they take the total cash flows to equity investors D(t)+CACF (t) as given.

With this assumption, they show that total market capitalization TMC(t) is independent

of the payout policy as determined by the split of total payouts into dividends D(t) and

cash flows arising from corporate actions CACF (t). Thus, the first ratio on the right side of

equation 36, given by D(t)+CACF (t)
TMC(t)

is fundamental. It is not impacted by changes in corporate

actions. Of course, the other two ratios, DPS(t)
X(t)

and CACF (t)
TMC(t)

are impacted by corporate actions.

To the extent that the ratio CACF (t)
TMC(t)

is volatile, the relative volatility of the fundamental ratio
D(t)+CACF (t)

TMC(t)
and the ratio of dividends per share and price per share DPS(t)

X(t)
will be different.

To the extent that there is are low frequency movements in the ratio CACF (t)
TMC(t)

not present in

the fundamental valuation ratio D(t)+CACF (t)
TMC(t)

, there will be low frequency movements in the

ratio of dividends per share to price per share DPS(t)
X(t)

not driven by fundamentals but instead
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driven by corporate actions.

In this appendix, we compare our measure of total payouts to equilibrium investors in

equity as represented by the CRSP Value-Weighted Total Market Index to that constructed

in Davydiuk et al. (2023) which builds on the work of Boudoukh et al. (2007) but also uses

the CRSP Stock file as we do. In Figure 6, we show in blue the ratio of total payouts on

the CRSP Value-Weighted Total Market Index to total market capitalization of the stocks in

that index ((D(t)+CACF (t))/TMC(t)) from 1926-2023. In red, we show the ratio of equity

cash payouts less net equity issuance to total market capitalization as measured in Davydiuk

et al. (2023) for the time period 1975-2017 obtained from the Journal of Finance website

for this article. Note that the measure constructed in Davydiuk et al. (2023) accounts for

share buybacks but also accounts for changes in entity structure due to initial public offerings

(IPOs), mergers, acquisitions, and exchanges.

As is evident in this figure, these two measures are quite similar where they overlap.

1920 1940 1960 1980 2000 2020 2040
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
CRSP Annual Total Payout Yield and DRSY JF Equity Payout Yield

Figure B.1: In blue: the ratio of payouts to an equilibrium investor to total market
capitalization of the stocks in the CRSP Value-Weighted Total Market Index ((D(t) +
CACF (t))/TMC(t)), where payouts are summed over the calendar year. In red: the ra-
tio of total payouts to equity to total market capitalization of equity from Davydiuk et al.
(2023).
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C Solving for Ak, Bk, and Hk

The price for a claim to dividends in the current period is given by

P
(0)
Dt

Ct

=
Dt

Ct

so H0 = 0, A0 = B0 = 1.

We have the following recursion for all other horizons k:

P
(k)
Dt

Ct

= Et

[
exp(mt+1 + gC,t+1)

P
(k−1)
D,t+1

Ct+1

]
. (37)

We use this to solve for Ak, Bk and Hk as follows.

This recursive equation implies that12

Ak

(
Dt

Ct

−Xt

)
+BkXt+Hk = Et [exp(mt+1 + gC,t+1)]

[
ρAk−1

(
Dt

Ct

−Xt

)
+Bk−1Xt +Hk−1

]
+

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]]

Matching coefficients on (Dt

Ct
−Xt) and Xt gives us that the coefficients Ak, Bk satisfy the

recursion

Ak = βρAk−1 = (βρ)k

Bk = βBk−1 = βk

To solve for the recursion for the constant term Hk, we need to solve for the term

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]]

To do so, we use the result that if x and y and z are independent standard normal random

variables and a, b, c, d are scalar constants, then

E [exp(ax+ by)(cx+ dz)] = ca exp((a2 + b2)/2) (38)

This formula is an application of Stein’s Lemma. We prove it in Appendix C.

12This equation is derived by substituting eq. (16) into the left-hand side of eq. (37) and again into the

right-hand side (this time evaluated at t+1 and k−1). Next we used eqs. (8) and (2) to express (Dt+1

Ct+1
−Xt+1)

and Xt+1 in terms of (Dt

Ct
−Xt) and Xt plus innovation terms.
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This gives us that

exp(m̄+ḡC)Et [exp((λC + σgC )ϵC,t+1 + λDϵD,t+1 + λXϵX,t+1) [Ak−1σDϵD,t+1 + (Bk−1 − Ak−1)σXϵX,t+1]] =

exp(m̄+ ḡC) exp

(
1

2
(λC + σgC )

2 +
1

2
(λ2

D + λ2
X)

)
(λDAk−1σD + λX(Bk−1 − Ak−1)σX) =

β (λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

This result implies that we can solve for the coefficients Hk recursively from

Hk = β (Hk−1 + λDAk−1σD + λX(Bk−1 − Ak−1)σX) .

C.1 Proof of formula (38)

One can prove this formula using the moment generating function for normal random vari-

ables. In particular, we start by computing for a normal random variable

E exp(atx) = exp(atµ+
1

2
a2t2σ2)

We then have

Eax exp(atx) = E
d

dt
exp(atx) = exp(atµ+

1

2
a2t2σ2)(aµ+ ta2σ2)

If we evaluate this expression at t = 1 with µ = 0 and σ = 1 for a standard normal, we have

Eax exp(ax) = exp(
1

2
a2)a2

we multiply by c/a to obtain

Ecx exp(ax) = exp(
1

2
a2)ca

We then have

E exp(ax+ by)(cx+ dz) = E exp(by)Ecx exp(ax) + E exp(by)E exp(ax)Edz

by the independence of x, y and z. Finally, since Ez = 0 and E exp(by) = exp(1
2
b2) we get

equation 38.
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D Solving for Gk and Jk

D.1 Solving for Jk

We derive a recursive formula for Jk by induction. By direct calculation, we have J0 = 0.

Observe that conditional expectations of the ratio of dividends per share to consumption

satisfy the following recursive formula by the Law of Iterated Expectations

Et
Dt+k

Ct+k

= EtEt+1
Dt+k

Ct+k

Thus,

exp

(
dct + kx̄+

(1− ρk)

1− ρ
xt

)
exp(Jk) =

Et exp

(
dct+1 + (k − 1)x̄+

(1− ρk−1)

1− ρ
xt+1

)
exp(Jk−1) =

exp(dct + kx̄+ xt +
(1− ρk−1)

1− ρ
ρxt) exp(Jk−1)Et exp(

(1− ρk−1)

1− ρ
σxϵx,t+1 + σdϵd,t+1)

This calculation gives us that

Jk = Jk−1 +
1

2

(
(1− ρk−1)

1− ρ

)2

σ2
x +

1

2
σ2
d +

(
(1− ρk−1)

1− ρ

)
σxσdρdx (39)

Note that we will need parameter restrictions to ensure that the sum of β̃k converges. We

discuss those below. But it will be useful to note that, if ρ ∈ (0, 1)

Jk < k

[
1

2

(
1

1− ρ

)2

σ2
x +

1

2
σ2
d +

(
1

1− ρ

)
σxσdρdx

]

D.2 Solving for Gk

By direct calculation, we have G0 = 0. To derive a recursive formula for Gk, we use the

recursion
P k
D,t

Ct

= Et exp(mt+1 + gC,t+1)
P k
D,t+1

Ct+1

Plugging in our proposed form of the solution, we have(P
(1)
C

C

)k

exp(Gk + Jk)

 exp

(
dct + kx̄+

(1− ρk)

1− ρ
xt

)
=
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(P
(1)
C

C

)k−1

exp(Gk−1 + Jk−1)

Et exp

(
mt+1 + gC,t+1 + dct+1 + (k − 1)x̄+

(1− ρk−1)

1− ρ
xt+1

)
Canceling terms involving Jk and Jk−1 gives(P

(1)
C

C

)k

exp(Gk)

 =

(P
(1)
C

C

)k−1

exp(Gk−1)

Et exp

(
mt+1 + gC,t+1 +

(
1− ρk−1

1− ρ

)
σxϵx,t+1 + σdϵd,t+1

)
Cancelling terms involving the price of a claim to consumption gives

Gk = Gk−1 + (λd + λxρdx)σd + (λx + λdρdx)

(
1− ρk−1

1− ρ

)
σx + λdλxρdx (40)

E Innovations in the Exponentially Affine Model
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Figure E.1: The autocorrelation functions for the innovations σXϵX,t+1 in blue and for σdϵd,t+1

in red for our exponentially affine valuation model.
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Figure E.2: Left Panel: The innovations σXϵx,t+1 uncovered from our valuation exercise with
our exponentially affine model. Right Panel: The innovations σdϵd,t+1 uncovered from our
valuation exercise with our exponentially affine model.valuation exercise.

F Full Calibration of Exponentially Affine Model

In this section, we produce a full calibration of the Exponentially Affine valuation model

and compare the exact values of the discount rates β̃k to the geometrically declining series

β̃k that we used in section 5.1. We show that, at least with respect to this calibration, the

geometrically declining series β̃k is a close approximation to the exact discount rates β̃k.

To calibrate the model, we must choose parameters β ≡ P
(1)
C

C
and x̄, ρ, σd, σx, λd, λx and

ρdx.

In choosing parameters, we can set β as before consistent with a price-dividend ratio for

a claim to consumption of 80. We choose ρ = 0.99 to explore the implications of our model

under the null hypothesis that the log price-dividend ratio is close to non-stationary.

Given remaining parameter choices, we compute the implied terms Gk and Jk and the

implied series for β̃k.

We choose the parameters x̄, σd, σx, λx and ρdx jointly to match the following data targets.

1. We choose x̄ equal to the sample average of dct+1 − dct.

2. We aim for a solution for model implied {xt} with sample mean of zero.

3. Given the values of {xt} implied by our parameters and the data and the choice of ρ,

we can construct the model-implied innovations σdϵd,t+1 and σxϵx,t+1. We set σd, σx and

ρdx consistent with the sample covariance matrix of these innovations.
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4. The parameters λd and λx are not separately identified. We set λd = λx/4 and we set

λx = −0.6465. These parameters together give us a ratio of price per share to dividends

per share of 30.125 when xt = 0 (that is expected growth of the log ratio of dividends

per share to consumption is equal to its long-run trend value).

We compare the first 100 discount factors from this calibrated model to a geometrically

declining series with the same value of 30.125 for the price dividend ratio when the expected

growth of the log ratio of dividends per share to consumption is equal to its long run value

of x̄ (i.e. when xt = 0) in Figure F.1. We show the exact solution for the first 100 of these

discount factors β̃k in blue. We show the corresponding values of β̃k in red. It is clear from

this figure that the two series are quite close.
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Discount Factors for First 100 Years: Full Model and Geometric Decay

Figure F.1: In blue: the first 100 discount factors β̃k computed with the calibrated parameters
of the model. In red: the first 100 of the geometrically declining discount factors β̃k when
this β̃ is calibrated to match a price dividend ratio of 30.125 when xt = 0.
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